|  Klein-Gordon Quantum Field Theory | 
Canonical Quantization
  > s.a. types of quantum field theories [including polymer representation].
  * Kinematical setup: Choose
    a foliation of spacetime generated by a (Killing) vector field t,
    with hypersurfaces diffeomorphic to some Σ.
  * Phase space: Classically, the set
    of pairs (φ, π) on Σ that are sufficiently smooth
    and rapidly vanishing at infinity; The quantum one includes distributional fields.
  * 1-particle Hilbert space: The
    space \(\cal H\) of smooth pairs of functions (φ, π)
    on Σ with finite Klein-Gordon norm.
  * Equal time commutation relations:
    If the canonical momentum is π(t, x):=
    ∂\(\cal L\)/∂(∂tφ)
    = ∂tφ,
[φ(t, x), φ(t, x')] = [π(t, x), π(t, x')] = 0 , and [φ(t, x), π(t, x')] = i δn−1(x−x') .
* Hamiltonian / momentum densities: From the stress-energy, one gets
    Ttt
    = \(1\over2\)[(∂tφ)2
    + (∂iφ)
    (∂iφ)
    + m2φ2]
    ,   Tti
    = ∂tφ
    ∂iφ
    ,
    H = \(\int_\Sigma\)Ttt
    dn−1x
    = ∑k
    (Nk + \(1\over2\)) ω ,
      Pi
    = ∫Σ
    Tti
    dn−1x
    = ∑k
    Nk
    ki .
  @ General references: Corichi et al PRD(02)gq
      [Schrödinger representation in curved spacetime],
    CQG(03)gq/02 [Fock vs algebraic],
    AP(04)ht/02 [Fock vs Schrödinger];
    Comay Ap(05)qp/04 [Hamiltonian operator].
  @ Inner product:
    Mostafazadeh & Zamani qp/03,
    AP(06)qp;
    Kleefeld CzJP(06)qp.
  @ Related topics: Arageorgis et al SHPMP(02) [non-unitary implementability of dynamics];
    Engle CQG(06)gq/05 [symmetry reduction];
    Mostafazadeh IJMPA(06) [PC, C, CPT, and position operators];
    Cortez et al a1311-MG13, AP-a1509 [unitary evolution as a uniqueness criterion].
Covariant Fock Space Quantization [@ in Wald 84]
  > s.a. fock space.
  * Positive frequency solutions: A complete set
    of field modes uk(t, x)
    defined by the choice of a timelike vector field ∂/∂t.
 * Creation / annihilation operators:
    They are obtained as coefficients of the field expansion
φ(t, x) = ∑k [ak uk(t, x) + ak† uk*(t, x)] .
  * 1-particle Hilbert space:
    The completion of the (Klein-Gordon) inner product space of smooth, rapidly
    falling positive-frequency solutions of the Klein-Gordon equation; It is
    isomorphic to L2(positive mass shell in
    Fourier transform space).
  * Full Hilbert space: The space
    \(\cal F\)S(\(\cal H\)):= \(\mathbb C\)
    ⊕ [⊕n
    = 1∞
    (⊗Sn
    \(\cal H\))], where "s" means symmetric; It has a natural Fock-space structure, in which
    the particle number basis elements are (these change under a Bogoliubov transformation)
|nk, n'k', ..., n''k''\(\rangle\) = (n! n'! ... n''!)−1/2 ak†n ak'†n'... ak''†n'' |0\(\rangle\).
In Curved Spacetime
  > s.a. quantum field theory in curved spacetime [representations];
  quantum cosmology; renormalization.
  @ General references: Hájíček & Isham JMP(96)gq/95 [group quantization];
    Helfer CQG(96)gq [stress-energy operator],
    ht/99,
    ht/99 [existence];
    Strohmaier LMP(00)mp;
    Agnew & Dray GRG(01)gq/00 [distributional modes];
    Iorio et al AP(01)ht [and deformed algebra];
    Alhaidari & Jellal PLA(15)-a1106;
    Barbado et al a1811 [method for computing the evolution].
  @ Robertson-Walker: Zecca IJTP(97);
    Trucks CMP(98)gq/97 [m ≠ 0 Hadamard state];
    Kaya & Tarman JCAP(12)-a1111 [cosmological backreaction];
    > s.a. FLRW spacetime.
  @ de Sitter space: Redmount PRD(06)gq/05 [massive, 1-particle + coherent states];
    Marolf & Morrison CQG(09) [group averaging];
    Page & Wu JCAP(12) [massless, vacuum].
  @ Related topics: Hortaçsu & Özdemir MPLA(98) [cosmic strings];
    Accioly & Blas PRD(02)gq [massive scalar, Foldy-Wouthuysen representation];
    Haba JPA(03)ht [static quantum metric];
    Camblong & Ordóñez PRD(05)ht/04 [semiclassical, and black-hole thermodyamics];
    Colosi a0903 [general boundary formulation];
    Cortez et al PRD(09)-a0903,
    CQG(11)-a1108 [with time-dependent mass].
  > Specific spacetimes:
    see bianchi I models; de sitter
    space; gowdy spacetime; gravitational
    collapse; quantum field theory in curved backgrounds [including anti-de Sitter];
    reissner-nordström spacetime; schwarzschild
    spacetime.
Topics and References
  > s.a. classical klein-gordon fields; path integral;
  quantum field theory [deformation, interpretation, ...].
  @ General references: Pauli & Weisskopf HPA(34);
    in Birrell & Davies 82;
    in Ryder 96;
    Mostafazadeh AP(04)gq/03 [inner products, observables].
  @ 2D: Fewster CQG(99)gq/98,
    CQG(99)gq/98 [cylinder];
    Faber & Ivanov ht/02 [different approaches],
    ht/02 [ground state];
    Marolf & Morrison CQG(09) [in de Sitter, group averaging].
  @ Modifications: Namsrai IJTP(98) [sqrt Klein-Gordon operator];
    Oeckl PRD(06)ht/05  [general boundary formulation];
    Koide & Kodama PTEP(15)-a1306 [stochastic variational method];
    > s.a. lorentz symmetry violations.
  @ Related topics:
    Weaver m.OA/02 [operator algebras];
    Mostafazadeh IJMPA(06)qp/03 [C, P, T];
    Morgan PLA(05)qp/04 [and classical random field];
    Alkhateeb & Matzkin a2103 [relativistic spin-0 particle in a box];
    > s.a. coherent states; feynman propagator;
      geometric phase; states in quantum field theory [including
      non-equilibrium]; temperature.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 mar 2021