|  Poisson Brackets / Algebra / Structures | 
In General > s.a. hamiltonian;
  lagrangian dynamics; symplectic manifold.
  $ Pre-Poisson structure: A manifold M
    and a Lie algebra structure on C∞(M) with
    Leibniz identity.
  $ Poisson structure: A pre-Poisson structure
    satisfying the Jacobi identity, i.e., a pair (M, { , }), such that
∃ f, g ∈ C∞(M) , {f, g} = Ωij (∂f/∂xi) (∂g/∂xj)
    is a bilinear, skew-symmetric form satisfying the Jacobi identity.
  * Relationships: A
    Poisson structure is canonically defined by a Lie groupoid.
  * Example: A symplectic manifold,
    where Ωij is non-degenerate and
    is the inverse of the symplectic structure, which is closed by the Jacobi identity.
  @ General references:
    Laurent-Gengoux et al 13;
    Moshayedi a2012-ln
      [Poisson geometry and deformation quantization].
  @ And other structures: Balinsky & Burman JPA(94) [compatible with algebraic structure];
    Landsman RVMP(97)qp/96 [transition probability];
    Boucetta CRAS(01) [and pseudo-Riemannian metric],
    DG&A(04) [and pseudo-Riemannian Lie algebras];
    Petalidou JPA(02) [and Jacobi structure];
    Cattaneo et al CMP(05)m.SG/03,
    Dherin LMP(06)m.SG/05 [generating functions];
    Cortese & García PLA(06)ht [compatibility with equations of motion];
    Morchio & Strocchi LMP(08)-a0805 [Lie-Rinehart algebra of a manifold, and dynamics];
    Machon a2008
      [Poisson bracket on the space of Poisson structures];
    > s.a. non-commutative geometry.
  @ Special cases: García-Naranjo et al LMP(15)-a1406 [on smooth four-manifolds];
    Benini & Schenkel AHP(17)-a1602 [for non-linear scalar field theories, based on the Cahiers topos];
    Jordan AJP(16)nov
      [for generators of the Galilei and Poincaré groups of spacetime transformations];
    Díaz-Marín a1812 [Yang-Mills fields on manifolds  with boundary].
  @ Quantum:
    Racanière JGP(06);
    Esposito a1502-proc;
    Khorasani EJTP-a1411 [derivation];
    Liebrich a2103 [in field theory, regularization].
  @ Related topics: Grabowski et al MPLA(93) [classification];
    Hojman JPA(96) [from symmetry and conservation law];
    Bering PLB(00) [boundary Poisson brackets];
    Cattaneo LMP(04)m.SG/03 [integration]:
    Ortega & Ratiu LMP(04) [symmetry reduction];
    McLachlan JPA(09) [vector fields];
    Gürses et al JMP(09) [finding, for a given dynamical system];
    Leclerc a1211 [symmetric, for fermion fields];
    Pavelka et al PhyD(16)-a1512 [change of description and hierarchy of Poisson brackets];
    Cattaneo et al a1811-en [graded Poisson algebras];
    > s.a. non-equilibrium thermodynamics;
      riemann tensor.
  > Online resources:
    see Wikipedia page.
Jacobi Bracket / Structure on a Manifold
  * Idea: A
    generalization of the Poisson bracket / structure, which
    represents a weakening the Leibniz rule.
  * Generalization –
    Jacobi algebroid: A graded Lie bracket on the Grassmann algebra
    associated with a vector bundle which satisfies a property similar
    to that of the Jacobi brackets.
  @ General references: de León et al JMP(97) [geometric quantization];
    Berceanu RVMP(06) [holomorphic representation]. 
  @ Generalizations: Pérez Bueno JPA(97)ht;
    Grabowski & Marmo JPA(01)m.DG,
    JPA(03) [algebroid].
  @ Physics examples: Asorey et al MPLA(17)-a1706 [test particles].
Moyal Algebra / Brackets > s.a. algebra;
  deformation quantization; Dirac
  Bracket; Peierls Bracket; wigner
  functions; Wigner-Weyl-Moyal Formalism.
  * Idea: A deformation of the
    Poisson algebra/bracket, obtained by introducing higher-derivative terms in it.
  * Freedom: The Jacobi identity
    fixes it almost uniquely, but it depends on a parameter κ, with
    { , }κ → { , }PB
    as κ → 0.
  @ General references: Moyal PCPS(49);
    Fletcher PLB(90) [uniqueness];
    Gozzi & Reuter MPLA(93),
    IJMPA(94)ht/03;
    Strachan JPA(95);
    Tzanakis & Dimakis JPA(97) [uniqueness];
    Merkulov mp/00;
    Dias & Prata JMP(07)qp/06 [and evolution];
    Hiley a1211
      [and the von Neumann operator algebra].
  @ For spin: Amiet & Weigert PRA(01) [spin and particle];
    Heiss & Weigert PRA(01) [discrete].
  @ For other theories: Fairlie MPLA(98) [in M-theory];
    Finkelstein ht/99 [gauge theory].
  @ Variations: Masuda & Saito MPLA(99)ht [supersymmetric];
    Dimakis & Müller-Hoissen LMP(00)ht [covariant, and Seiberg-Witten maps];
    Gouba et al MPLA(12)-a1106
      [generalization of the Moyal and Voros products, and physical interpretation].
  > Online resources:
    see Wikipedia pages on Moyal
    bracket and Moyal product.
Nambu Brackets
  > s.a. deformation quantization; Nambu Dynamics;
  phase space; Ternary Operations.
  * Idea:
    A generalization of Poisson brackets of the form
{f1, ..., fn} = ηi1, ..., in ∂i1 f1 ... ∂in fn ,
    where η is the Nambu tensor; It is used in a modified form
    of classical dynamics; Its quantization is still not understood.
  @ General references: Takhtajan CMP(94);
    Hietarinta JPA(97);
    Gautheron CMP(98);
    Pandit & Gangal JPA(98) [geometric];
    Grabowski & Marmo JPA(99) [inductive definition];
    Ogawa & Sagae IJTP(00) [Lagrangian formalism];
    Dufour & Zhitomirskii LMP(03) [and singularities of integrable 1-forms];
    Tegmen IJMPA(06)mp [with constraint functionals];
    Dereli et al IJMPA(09) [3D phase space, canonical transformations].
  @ Examples, systems: Yamaleev AP(00) [relativistic particle];
    Guha JMP(02) [hydrodynamic models];
    Salazar & Kurgansky a1011 [electromagnetic field];
    Horikoshi & Kawamura a1304 [from a variant formulation of Hamiltonian dynamics].
Other Generalizations
  @ Covariant: Marsden et al AP(86) [classical fields and electromagnetism];
    Pol'shin IJGMP(08)-a0801 [Leibniz bracket];
    D'Avignon a1510
      [non-canonical bracket and physical consequences];
    > s.a. symplectic structures.
    @ Non-local: Mokhov FAA(03)m.DG/02,
    TMP(02)m.DG,
    TMP(04)m.DG/02 [hydrodynamic];
    Casati et al a1903 [weakly non-local].
  @ Related topics:
    de Azcárraga et al JPA(96),
    ht/96-proc,
    JPA(97);
    Grabowski & Marmo MPLA(98) [based on 2k-forms];
    Severa & Weinstein PTPS(01)m.SG [closed 3-form background];
    Lavagno et al EPJC(06)qp [q-deformed];
    Golmankhaneh TJP(08)-a0807 [fractional];
    Khudaverdian & Voronov AIP(08)-a0808 [higher-order];
    Mokhov a1001 [deformation];
    Bruce JoM-a1301 [Loday-Poisson brackets];
    Beltiţă et al JGP(18)-a1710 [on Banach manifolds].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 mar 2021