|  Ashtekar-Variables Formulation of Canonical General Relativity | 
In General
  > s.a. BRST; initial-value formulation;
  numerical general relativity / connection
  formulation of quantum gravity.
  * Ashtekar variables: Based
    on a self-dual form of the action; A complex SO(3) connection \(A_a{}^i(x)\)
    and a densitized triad \(E^a{}_i(x)\) (initially, a densitized SU(2) soldering
    form, to be used with coupled spinorial matter), with Poisson brackets
    {Aai(x),
    Ebj(y)}
    = −i δab
    δij
    δ(x−y); In a solution of the field equations,
    Aai
    = κ−1
    (Γai
    + i Kai),
    with Γ the connection of E, and K the extrinsic curvature.
  * Ashtekar-Barbero variables: Using
    the Immirzi parameter γ, the connection can be generalized to
Aai = κ−1 (Γai + γ Kai) ;
    Notice however that, for γ ≠ i, this spatial
    connection is not the pull-pack of a spacetime connection.
  * Action: For the
    original, complex Ashtekar variables,
S = ∫ dt ∫Σ d3x [−2i Eai Aai + 2i Na Ebi Fabi − 2i N i \(\cal D\)a Eai + N Eai Ebj εijk Fabk] + boundary terms .
* Constraints and evolution:
\(\cal D\)a Ea = 0 , tr Ea Fab = 0 , tr Ea Eb Fab = 0 .
  * And geometry: The surface
    element of a 2-surface xa(r, s)
    is (Eai
    Eib fa
    fb )1/2 dr ∧ ds,
    where fa:= εabc
    xbxc.
  * SU(2) vs SO(3): The idea
    that the contribution from j = 1 edges of spin networks dominates
    black-hole areas, as opposed to j = 1/2, suggests (but does not
    imply – an exclusion-principle argument might apply) that the true
    gauge group might be SO(3) rather than SU(2).
  > Online resources:
    see scholarpedia article. 
References > s.a. first-order actions;
  higher-order gravity; Immirzi Parameter.
  @ General: Beetle & Corichi gq/97,
    Corichi & Hauser gq/05 [bibliography];
    Fleischhack JPCS(12) [rev].
  @ Complex variables: Sen PLB(82);
    Ashtekar PRL(86),
    PRD(87),
  in(87), in(90);
    Jacobson & Smolin PLB(87);
    Dolan PLB(89);
    Herdegen CQG(89);
    Bergmann & Smith PRD(91);
    Soloviev PLB(92);
    Wallner PRD(92);
    Chang & Soo IJMPD(93)ht;
    Romano GRG(93)gq [vs geometrodynamics];
    Khatsymovsky gq/93,
    PLB(97)gq/96 [and self-duality];
    Kerrick PRL(95);
    Nieto MPLA(05) [form of the action];
    Wieland AHP(11)-a1012 [and Holst action],
    CQG(11) [twistorial phase space];
    Rosales-Quintero IJMPA(16)-a1505 [pure-connection self-dual formulation, and supergravity];
    Ashtekar & Varadarajan Univ(21)-a2012 [geometrical interpretation of Hamiltonian evolution].
  @ Real variables: Barbero PRD(94)gq/93,
    PRD(95)gq/94;
    Holst PRD(96)gq/95;
    Loll in(97)gq;
    Samuel CQG(00)gq,
  PRD(01).
  @ SU(2) vs SO(3): Swain IJMPD(03)gq-GRF
    and gq/04,
    gq/04-MGX;
    Chou et al PLB(06)gq/05.
  @ Compared to metric variables: Anandan gq/95;
    Zagermann CQG(98)gq/97 [2 Killing vectors].
  @ Nature of equations: Iriondo et al PRL(97)gq,
    ATMP(98)gq;
    Yoneda & Shinkai PRL(99)gq/98;
    Shinkai & Yoneda PRD(99)gq [stable form].
  @ Reality conditions: Bengtsson TMP(93);
    Mena IJMPD(94)gq/93 [and quantization];
    Immirzi CQG(93);
    Barbero PRD(95)gq/94,
    PRD(95)gq/94;
    Morales-Técotl et al CQG(96)gq [as Dirac constraints];
    Yoneda & Shinkai CQG(96)gq [with cosmological constant];
    Pons et al PRD(00)gq/99.
  @ Euclidean / Lorentzian: Ashtekar PRD(96)gq/95;
    Barbero PRD(96)gq [2-parameter action];
    Barnich & Husain CQG(97)gq/96;
    Mena G&C(98)gq/97 [generalized Wick transform];
    Garay & Mena CQG(98)gq.
  @ Solving the constraints: Thiemann CQG(93)gq;
    Barbero CQG(95)gq/94;
    Goldberg PRD(96) [gauge and diffeomorphism].
  @ Initial-value problem: Saraykar & Wagh pr(89);
    Robinson & Soteriou CQG(90);
    Capovilla et al gq/93.
  @ Gauge issues:
    Manojlović & Miković NPB(92) [fixing];
    Montesinos & Vergara GRG(01)gq/00 [invariance].
  @ Holonomy of Ashtekar-Barbero connection: Charles & Livine PRD(15)-a1507;
    Bilski a2012.
  @ Related topics: Giannopoulos & Daftardar CQG(92) [algebraic evaluation];
    Chang & Soo PRD(92) [and 4-manifolds];
    Rovelli PRD(93) [and surface areas];
    Fleischhack & Levermann a1112 [fiber-bundle perspective];
    Freidel et al PRD(17)-a1611 [with a spatial boundary, auxiliary strings];
    > s.a. holonomy.
Variations and Generalizations
  > s.a. 3D general relativity; canonical gravity
  [asymptotically flat] and models [including matter].
  * Covariant formulation:
    A two-parameter family of covariant connections has been obtained by Alexandrov
    using Dirac brackets (generically these connections are not commutative), and by
    Geiller et al solving explicitly the second-class constraints obtained from the
    Holst action; The latter procedure hides the explicit Lorentz covariance, which
    can be restored by suitably redefining the variables.
  @ Linearized:
    Ashtekar & Lee IJMPD(94).
  @ Covariant formulation: Alexandrov CQG(06)gq/05 [and reality conditions];
    Fatibene et al CQG(07)gq;
    Cianfrani & Montani PRL(09)-a0811,
    a0904-proc;
    Cianfrani & Montani PRD(09)-a0904 [with scalar field];
    Fatibene & Francaviglia a0905;
    Rovelli & Speziale PRD(11)-a1012;
    Geiller et al Sigma(11)-a1103,
    PRD(11)-a1105;
    > s.a. canonical quantum gravity [covariant lqg].
  @ 2+2 decomposition:
    d'Inverno & Vickers CQG(95);
    d'Inverno et al CQG(06) [double-null, Hamiltonian].
  @ Different foliations / decompositions:
    Fodor & Pejés in(91) [based on threading];
    Maran gq/03-wd [based on timelike foliations];
    Gielen & Wise PRD(12)-a1111,
    Gielen a1210-proc
      [with a field of observers, Lorentz-covariant];
    Perlov a2001 [for timelike 3+1 foliations];
    > s.a. modified formalisms.
  @ As BF theory:
    Capovilla et al CQG(01)gq,
    Celada et al CQG(16)-a1605 [and the Immirzi parameter].
  @ Other similar variables:
    Rosas-Rodríguez IJMPA(08)
      [Eai
      and Bai];
    Dittrich & Geiller CQG(15)-a1412 [flux formulation];
    Ziprick & Gegenberg PRD(16)-a1507 [discrete phase space and Hamiltonian];
    Cattaneo & Pérez CQG(17)-a1611 [Poisson brackets of 2D smeared fluxes];
    > s.a. loop variables.
  @ And torsion: Maluf JMP(92);
    Montesinos JMP(99).
  > Other versions and theories: see
    discretized gravity; higher-dimensional gravity;
    higher-order theories; regge calculus;
    Topological Gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2021