|  Supergravity | 
In General > s.a. approaches to quantum
  gravity / Hypergravity; supersymmetry
  phenomenology; versions of supergravity and phenomenology.
  * History: 1976, Proposed by Ferrara,
    Van Nieuwenhuizen & Freedman, and independently by Deser & Zumino; 2007 and
    2009, Indications that N = 8 supergravity may be perturbatively finite.
  * Idea: A supergravity theory is a
    supersymmetric field theory in which supersymmetry is made local; It can be considered
    as a quantum field theory with special fields, or as a theory in superspace with
    bosonic and fermionic (Grassmannian) coordinates, respectively (x, y,
    z, t) and θα i, α
    = 1... 4, i = 1 ... N.
  * Particle content and sectors:
    It involves fields of spin 0, 1/2, 1, 3/2 (gravitino; these are consistent only in
    supergravity) and 2, and can only be implemented when gravity (curvature) is present;
    It has an observable sector with the standard model particles and their supersymmetric
    partners, and a hidden sector, coupled only gravitationallly to the observable one.
  * Motivation: It was hoped that it
    would be a finite theory, because of cancellations, similarly to what happened
    for some supersymmetric gauge theories, but this hope has not materialized –
    it is non-renormalizable at three-loop level (does extended – N
    > 1 – supergravity offer hope?); It is a framework for the unification
    of all interactions.
  * Features: It incorporates torsion,
    related to intrinsic angular momentum.
  * Solutions: Any solution
    of a supergravity model contains an exact solution of the regular Einstein
    equation (with a peculiar coupling).
References
  > s.a. grand unified theories; particle types [gravitino];
  string phenomenology; topology in physics.
  @ Precursor: Rarita & Schwinger PR(41);
    & Volkov & Soroka [Soroka ht/01-proc].
  @ General: Freedman et al PRD(76);
    Deser & Zumino PLB(76);
    Grisaru PLB(77);
    Deser et al PRL(77),
    PRD(77);
    Tabensky & Teitelboim PLB(77) [from sqrt of general relativity];
    Ferrara & van Nieuwenhuizen PLB(78),
    PLB(78),
    PLB(78);
    Baranov et al TMP(85);
    Brandt FdP(02)ht-ln;
    de Wit ht/02-ln;
    van Nieuwenhuizen ht/04-in [intro];
    Gauntlett FdP(05)ht-in [classifying solutions];
    Năstase a1112-ln [intro];
    Ferrara & Marrani proc(13)-a1201.
  @ Group-geometric approach: Coimbra et al JHEP(11)-a1107 [as generalised geometry];
    Castellani et al JHEP(16)-a1607 [action as an integral on a supermanifold],
    FdP(18)-a1802 [rev];
    D'Auria a2005-in [rev].
  @ History: Ferrara a1701-proc;
    Ferrara & Sagnotti a1702-talk;
    Deser EPJH(18)-a1704,
    CQG+(17);
    Duplij EEJP(19)-a1910.
  @ Textbooks and reviews: van Nieuwenhuizen in(77);
    Freedman & van Nieuwenhuizen SA(78)feb;
    van Nieuwenhuizen & Freedman ed-79;
    Ferrara pr(80);
    Hawking & Roček ed-81;
    Cremmer in(81);
    van Nieuwenhuizen PRP(81);
    Julia in(85);
    Castellani et al 86;
    Jacob ed-86;
    Srivastava 86;
    Gibbons in(85);
    West 90;
    Casati et al 91;
    Wess & Bagger 92;
    Buchbinder & Kuzenko 95 [IIIb];
    Tanii ht/98 [various dimensions];
    Van Proeyen ht/03-proc;
    Freedman & Van Proeyen FdP(11)-a1106-ln,
    12;
    Derendinger JPCS(15)-a1509;
    Nath 16.
  @ Dimensional reduction:
    Lavrinenko et al CQG(98).
  @ Boundary conditions: 
    Hawking PLB(83);
    Esposito PLB(96);
    Belyaev JHEP(06) [with boundary];
    van Nieuwenhuizen & Vassilevich CQG(05)ht;
    Van Nieuwenhuizen et al IJMPD(06).
  @ Related topics:
    Ferrara et al NPB(76) [matter couplings];
    de Wit & van Zalk GRG(09) [and M-theory];
    > s.a. positive-energy theorems.
  > Online references:
    see Wikipedia page.
Canonical Form and Quantization > s.a. time
  in quantum gravity; types of quantum field theories [spin-3/2].
  @ Classical:
    Pilati NPB(78).
  @ Euclidean:
    Vancea PRL(97),
    Ciuhu & Vancea IJMPA(00)gq/98 [observables, in terms of Dirac eigenvalues].
  @ Constraints:
    Teitelboim PRL(77);
    Gorobey & Lukyanenko CQG(89) [complex self-dual, closure of constraints];
    Wulf IJMPD(97)gq/96 [N = 1, non-closure];
    Pauna & Vancea MPLA(98) [in terms of Dirac eigenvalues];
    McKeon a1203
      [N = 1 supergravity in 2 + 1 dimensions, quantization];
    Cvetič et al JHEP(15)-a1411 [explicit solutions of the (time-symmetric) initial-value constraints].
  @ Canonical quantization: Fradkin & Vasiliev
      PLB(77);
    D'Eath PRD(84);
    Carroll et al NPB(94)ht [physical states];
    D'Eath IJMPD(96).
  @ Connection / loop variables:
    Jacobson CQG(88);
    Gorobey & Lukyanenko CQG(90);
    Matschull CQG(94);
    Ezawa PTP(96)ht/95 [as BF theory];
    Armand-Ugón et al NPB(96)ht/95 [loop variables];
    Nieto et al PRL(96) [self-dual spin connection];
    Urrutia AIP(96)ht;
    Melosch  & Nicolai PLB(98)ht/97;
    Ootsuka et al CQG(99)gq/98 [N = 2];
    Tsuda & Shirafuji CQG(99)gq/98,
    PRD(00)gq [N = 2];
    Ling & Smolin PRD(00)ht/99,
    Ling JMP(02)ht/00-MG9 [spin networks];
    Tsuda PRD(00)gq/99 [N = 1];
    Tsuda gq/04 [N = 3 chiral];
    Kaul PRD(08)-a0711,
    Szczachor a1202-conf
      [Holst action with Immirzi parameter, no change in equations of motion];
    Sengupta & Kaul PRD(10)-a0909;
    Bodendorfer et al CQG(13)-a1105,
    CQG(13)-a1105,
    PLB(12)-a1106;
    Bodendorfer a1509 [and the AdS/cft correspondence];
    Eder & Sahlmann a2011 [N = 1, lqg methods];
    > s.a. models in canonical gravity.
  @ Quantization, perturbative: Bern et al PRD(08) [possible UV finiteness];
    Modesto a1206
      [non-local, power-counting super-renormalizable and tree-level unitary theory];
    Garousi PRD(13)-a1303 [Riemann curvature corrections].
  @ Related topics: Deser et al PRL(77)-a1506 [renormalizability];
    Bhattacharyya et al CQG(14) [one-loop test].
  > Specific models: see gowdy
    spacetime; graviton; minisuperspace.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 nov 2020