|  Inflationary Universe | 
In General > s.a. inflationary phenomenology 
  and scenarios; inflation and planck-scale physics.
  * Idea: A universe with an accelerating expansion rate,
    d2a/dt2 > 0
    for FLRW spacetime in proper time; The expansion may be exponential, a ∝ exp{Ht}.
  * Origin in homogeneous cosmology:
    It arises in models where (e.g., because of a phase transition) the energy density
    remains constant during the expansion, like a cosmological constant; This changes
    drastically the expansion rate with respect to the standard big-bang model, and
    makes it exponential in time (inflation), and we get a de Sitter-like behavior.
  * Motivation: A sufficiently long
    inflation could solve the horizon, flatness and monopole problems of big bang
    models, and possibly explain structure formation; It makes predictions, and
    provides a link between high-energy physics and cosmology.
  * Generalized view: The universe
    has no beginning and no end, inflating bubbles in it keep producing new ones.
  * 1980s: Inflation predicts
    Ω = 1, but observationally we see Ω < 0.3 (without dark matter).
  * 1991: What is the inflaton?
    How does it become ordinary matter (reheating problem)?
  * 1998: Chaotic inflation seems
    to be the most widely accepted; Requires the least amount of fine tuning.
  * 2008: Predictions from inflation
    have so far been confirmed, but what drove it and how long did it last?
  * 2013: The single field slow-roll
    inflationary scenarios (with minimal kinetic term) are favored, based on Planck
    satellite data.
  * 2014: BICEP2 Collaboration results
    on the ratio of power in tensor to scalar density perturbations are seen as
    confirming inflation.
Specific Issues > s.a. de sitter-cft;
  Effective Field Theory; holography
  in field theory; civilizations; singularities [theorems];
  arrow of time.
  * Issues: Open questions are understanding
    whether the universe needed to be in a very smooth initial state for inflation; the quantum
    theory of cosmological perturbations; how these might have led to inflation; and what
    imprint they left on the resulting classical spacetime.
  @ General references:
    Albrecht et al PRD(87);
    Goncharov & Linde JETP(87);
    Jensen & Stein-Schabes PRD(87);
    Ellis CQG(88) [with current Ω ≠ 1];
    Accetta & Steinhardt GRG(91);
    Frolov & Kofman JCAP(03)ht/02 [de Sitter thermodynamics];
    Kinney & Riotto JCAP(06)ap/05 [uncertainties].
  @ Preheating and reheating: Dolgov & Linde, Abbott et al [elementary theory];
    Boyanovsky et al ap/96-proc [review];
    Kofman et al PRD(97)hp;
    Bassett & Tamburini PRL(98) [in GUTs];
    Brandenberger hp/01-proc;
    Allahverdi et al ARNPS(10)-a1001.
  @ And phase transitions:
    Mazenko et al PRD(85);
    Freivogel et al JCAP(09)-a0901 [probability distribution for bubble collisions];
    Johnson et al PRD(12)-a1112 [outcome of bubble collisions];
    McEwen et al a1206-proc [bubble-collision signatures in the cmb];
    Pashitskii & Pentegov JETP(16)-a1510 [driven by changing scalar curvature];
    Pekker & Shneider a2102 [physical processes in the transition region];
    > s.a. multiverse [bubbles as universes].
  @ Inhomogeneities, causality / genericity:
    Goldwirth & Piran PRD(89),
    PRP(92);
    Calzetta & Sakellariadou PRD(92),
    PRD(93);
    Iguchi & Ishihara PRD(97),
    et al PRD(97)gq/96 [curvature];
    Kaloper et al PRD(99)ht/98;
    Vachaspati & Trodden PRD(00)gq/98;
    Toporensky G&C(99)gq;
    Sakai CQG(04)gq/03 [topological inflation];
    Imponente  & Montani gq/04;
    Carroll & Tam a1008 [and invariant measure on solutions];
    Corichi & Karami PRD(11)-a1011 [the measure problem and lqc];
    Greene et al PLB(11) [smooth early universe from weak gravity];
    Perez & Pinto-Neto G&C(11)-a1205;
    Corichi & Sloan CQG(14)-a1310
      [Hamiltonian dynamics, attractor solutions and the measure problem];
    Easther et al JCAP(14)-a1406 [multifield];
    East et al JCAP(16)-a1511;
    Clough et al a1608 [robustness];
    Azhar a1911 [effective field theory approach];
    > s.a. inflationary phenomenology [perturbations].
  @ Initial conditions: Calzetta PRD(91);
    Kaloper et al JHEP(02)ht;
    Collins & Holman ht/05 [effective theory renormalization];
    Handley et al PRD(14)-a1401;
    Carrasco et al PRD(15)-a1506 [and cosmological attractors];
    Brandenberger IJMPD(17)-a1601 [rev];
    Dimopoulos & Artymowski APP(17)-a1610;
    Linde a1710-conf [rev];
    Mishra et al PRD(18)-a1801 [in a FLRW universe];
    Finn & Karamitsos PRD(19)-a1812 [finite measure];
    Sloan & Ellis PRD(19)-a1810 [Higgs as dilaton].
  @ Likelihood of inflation: Albrecht & Sorbo PRD(04)ht [framework];
    Miao & Woodard JCAP(15)-a1506 [fine tuning].
References
  > s.a. entropy bounds; gravitational instantons;
  history; cosmological models [alternatives to inflation].
  @ I: Guth & Steinhardt SA(84)may;
    Lindley Nat(90)may;
    Steinhardt Nat(90)may;
    Linde SA(94)nov;
    Lidsey 00;
    Steinhardt SA(11)apr [issues].
  @ II: Huggins TPT(13) [and vacuum energy]. 
  @ Books: Abbott & Pi 86;
    in Kolb & Turner 94;
    Linde 90-ht/05;
    Guth 97;
    Liddle & Lyth 00;
    Lemoine et al 08;
    Lyth & Liddle 09;
    Gorbunov & Rubakov 10 [and perturbations].
  @ Reviews: Linde RPP(84),
    PT(87)sep,
    gq/96-conf,
    gq/96-conf;
    Turner APPB(87),
    in(88);
    Olive PRP(90);
    Brandenberger ap/96,
    ap/97,
    hp/99-ln;
    Starobinsky ap/98-conf;
    Peebles ap/99-proc;
    Guth PRP(00)ap,
    ap/00-proc,
    ap/01-proc;
    Lyth hp/00;
    Brandenberger hp/01-proc,
    ap/02;
    Linde IJMPA(02)ht/01-proc [vs ekpyrotic];
    García-Bellido NPPS(03)hp/02;
    Turok CQG(02);
    Turner AHP(03)ap/02-proc;
    King Pra(04)hp/03-conf;
    Guth ap/03-in,
    ap/04-in;
    Linde PS(05)ht/04-conf;
    Guth & Kaiser Sci(05)ap;
    Bassett et al RMP(06)ap/05 [especially reheating];
    Guth JPA(07)ht-conf [especially eternal];
    Linde LNP(08)-a0705-conf;
    Kinney IJMPA(07);
    Baumann & Peiris ASL(09)-a0810;
    Sriramkumar a0904-CS [and perturbations];
    Baumann a0907-ln [TASI lectures];
    Linde a1402-ln [after Planck 2013];
    Clesse a1501-proc,
    Martin a1502-ln [after Planck 2015];
    Rangarajan a1506-conf [after Planck and BICEP2];
    Martin a1807-proc,
    a1902-in [status].
  @ Intros: Liddle ap/99-proc;
    Faraoni AJP(01)mar-phy/00;
    Albrecht ap/00-ln;
    Watson ap/00;
    Tsujikawa hp/03-ln;
    Lazarides JPCS(06)hp;
    Langlois a0811-conf;
    Kinney a0902-ln;
    Enqvist a1201-ln;
    Senatore a1609-ln;
    Vázquez et al a1810-ln.
  @ Conceptual: Earman & Mosterin PhSc(99)mar;
    Knobe et al BJPS(06)phy/03 [implications, and doomsday];
    García-Bellido a1003-wd [epistemological foundations];
    Ijjas et al PLB(14)-a1402 [alternative inflationary paradigm after Planck2013];
    Horgan blog(14)dec [Paul Steinhardt's position];
    Singal a1603-conf [questioning the motivation].
  @ Issues: Hawking et al PRD(01)ht/00 [and trace anomaly];
    Ijjas et al PLB(13)
    and response Guth et al PLB(14),
    SA(17)
    and rebuttal SA(17) [need or new ideas];
    > s.a. Boltzmann Brains; chaos
      in general relativity; energy conditions; tachyons.
Scientific ideas should be simple, explanatory, predictive. The inflationary multiverse as
  currently understood appears to have none of those properties. – Paul Steinhardt, 2014.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 feb 2021