|  Gowdy Spacetimes | 
In General
  > s.a. asymptotic flatness at null infinity; models
  in numerical relativity; solutions of einstein's equation.
  * Idea: Spacetimes with
    two spacelike Killing vector fields.
  * Topology: In the spatially
    compact case (the Killing vector fields commute) it can be
    T3 × \(\mathbb R\)1,
    S3 × \(\mathbb R\)1,
    or S2 × S1 ×
    \(\mathbb R\)1.
  * Metric: In the torus case, with partial
    gauge fixing (and calling x1 = θ,
    one of the angles),
ds2 = −N 2 dt2 + h11 [dθ + N 1dt]2 + ∑a, b = 2, 3 hab (dxa)2 .
  * Polarized case: Diagonal
    metrics, only one gravitational degree of freedom; Can be reduced to 2+1 gravity
    to a massless scalar field. 
  * Unpolarized case:
    Less tractable, requires numerical treatment.
References
  @ General: Gowdy PRL(71);
    Misner PRD(73);
    Gowdy AP(74);
    Tanimoto JMP(98)gq [generalizations];
    Rendall JGP(12) [spatially topologically twisted].
  @ Exact solutions: Obregón & Ryan gq/98;
    Ringström MPCPS(04)gq/02;
    Sánchez et al JMP(04)gq/03 [generating method].
  @ Integrals of motion:
    Manojlović & Spence NPB(94).
  @ Observables: Husain PRD(96)gq [evolution, Ashtekar variables];
    Torre CQG(06)gq/05 [polarized, all weak observables].
  @ In string theory: Narita et al CQG(00)gq;
    Cisneros-Pérez et al ht/03-conf [and Kantowski-Sachs].
  @ With matter: Barbero et al CQG(07)-a0707 [massless scalar fields, canonical];
    Gómez Vergel PhD(09)-a0910 [classical and quantum].
  @ Foliations: Berger et al AP(97);
    Andréasson CMP(99)gq/98 [Einstein-Vlasov].
  @ Asymptotic evolution: Jurke CQG(03)gq/02 [polarized T3];
    Berger gq/02/PRD [vacuum].
  @ Cauchy horizons: Chruściel & Lake CQG(04)gq/03;
    Quevedo GRG(06)gq/04.
  @ Related topics: Verdaguer PRP(93) [solitons];
    Andersson et al CQG(04)gq/03-fs [scale-invariant variables];
    Gad ASS(04)gq/04 [energy and momentum distributions];
    Gambini et al PRD(05)gq [consistent discretization];
    Beyer & LeFloch PRD(11) [geodesics];
    Hennig CQG(16)-a1601 [new vacuum and electrovacuum solutions];
    > s.a. numerical relativity [spectral evolution].
Singularity > s.a. types of singularities.
  * Result: All classical
    vacuum Gowdy solutions have a singularity.
  * Cosmic censorship:
    Reduce to harmonic map, use behavior of Bel-Robinson tensor.
  * Polarized case: Strong
    cosmic censorship, long time existence and inextendibility, proved; The
    behavior near the singularity is asymptotically velocity-term dominated.
  * Unpolarized case: Same
    behavior near the singularity found by Berger & Moncrief, but Hern &
    Stewart disagree.
  @ Polarized: Moncrief (81);
    Moncrief et al; Chruściel et al CQG(90).
  @ Cosmic censorship: Ringström AM(09) [proof of strong cosmic censorship in T3 Gowdy spacetimes];
    LRR(10) [rev].
  @ Behavior near singularity:
    Isenberg & Moncrief AP(90) [polarized];
    Berger & Moncrief PRD(93),
    Hern & Stewart CQG(98)gq/97 [unpolarized];
    Berger et al gq/97;
    Berger & Garfinkle PRD(98)gq/97 [on T3, support for AVTD];
    Kichenassamy & Rendall CQG(98)-a1709,
    Rendall CQG(00)gq [Fuchsian analysis];
    Ståhl CQG(02)gq/01 [S2 × S1 and S3, Fuchsian];
    Chae & Chruściel gq/03;
    Ringström CQG(04).
  @ Spikes near singularity: Rendall & Weaver CQG(01)gq;
    Garfinkle & Weaver PRD(03);
    Garfinkle CQG(04)gq.
Quantization > s.a. quantum-cosmology phenomenology.
  @ General references: Berger AP(74);
    Husain & Smolin NPB(89) [connection representation];
    Corichi et al IJMPD(02)gq;
    Torre PRD(02)gq;
    Cortez & Mena PRD(05)gq [the unitarity issue];
    Torre CQG(07)gq/06 [Schrödinger representation].
  @ 3-torus topology: Mena PRD(97)gq [connection representation];
    Pierri IJMPD(02)gq/01 [polarized];
    Corichi et al PRD(06)gq/05,
    PRD(06)gq,
    CQG(06)gq,
    PRD(07)-a0710  [unitary evolution];
    Cortez et al PRD(07)gq [uniqueness of Fock quantization].
  @ With massless scalar field: Barbero et al CQG(08) [unitary evolution];
    Martín-Benito et al PRD(11)-a1012 [in loop quantum cosmology].
  @ In supergravity: Macías et al AIP(06)gq/05,
  PRD(08)-a0801  [N = 1, T3 topology].
  @ And singularity, ADM: Berger PLB(82), AP(84); Husain CQG(87).
  @ Loop quantization: Banerjee & Date
CQG(08)-a0712,
CQG(08)-a0712;
    Martín-Benito et al PRD(08)-a0804,
    Mena & Martín-Benito IJMPA(09) [and Fock space];
    Brizuela et al CQG(10)-a0902;
    Garay et al PRD(10);
    Martín-Benito et al PRD(10)-a1006 [vacuum],
    JPCS(11)-a1012;
    Brizuela et al PRD(11) [effective dynamics];
    Martín-Benito et al CQG(14)-a1307 [approximation methods];
    Martín de Blas et al a1509-proc and PRD(17)- a1706;
    > s.a. Covariance.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 6 feb 2018