|  Teleparallel Structures and Gravity Theories | 
In General
  > s.a. gravitation / Riemann-Cartan
  Structure; stress-energy pseudotensors;
  Weitzenböck Connection.
  * Teleparallel structure:
    A (parallelizable) manifold with a tetrad field (of orthonormal
    vectors in the Lorentzian sense) from which a flat connection with
    non-vanishing torsion is defined (the Weitzenböck connection), in
    addition to a metric as usual; An example of Riemann-Cartan structure.
  * Teleparallel equivalent
    of general relativity: An alternative formulation of Einstein's
    equation, in which the gravitational field is described by the torsion
    of the curvature-free Weitzenböck connection of a teleparallel
    structure (rather than the curvature of the torsion-free connection of
    general relativity); A gauge theory for the translation group, which
    describes the gravitational interaction by a force similar to the Lorentz
    force of electromagnetism, a non-universal interaction.
  * History:
    Originally proposed by Einstein in an attempt to unify gravity and
    electromagnetism; Now studied as a theory of gravity in its own right.
  @ Teleparallel structures: Itin gq/00-MG9 [as combinations of Riemannian and symplectic structures?].
  @ Reviews, intros: de Andrade et al gq/00-MG9;
    Garecki a1010-proc;
    Aldrovandi & Pereira 13;
    Pereira a1302-ch;
    Maluf AdP(13)-a1303;
    Aldrovandi & Pereira CH-a1506;
    Golovnev a1801-proc.
  @ General references:
    Mielke AP(92) [Ashtekar-like variables];
    Maluf & Kneip JMP(97)gq/95 [energy density];
    Aldrovandi et al BJP(04)gq/03-conf [peculiarities of the theory];
    Salgado NCB(06) [and Einstein-Hilbert action];
    Belo et al ASTP-a1108 [gauge transformations];
    Golovnev et al CQG(17)-a1701 [Lorentz breaking and covariance];
    Hohmann et al PRD(18)-a1711 [and non-linear electrodynamics];
    Krššák et al CQG(19)-a1810 [fully invariant approach];
    Bejarano et al Univ(19)-a1905 [covariance];
    Emtsova et al a1910
      [conserved currents and superpotentials].
  @ And general relativity:
    Knox SHPMP(11);
    Combi & Romero AdP(18)-a1708 [inequivalence].
  @ Cosmological models: Sharif & Amir GRG(06)gq [Friedmann solutions, Lewis-Papapetrou];
    de Haro & Amorós PRL(13)-a1211 [non-singular];
    Järv & Toporensky PRD(16)-a1511 [with scalar field, general relativity as an attractor];
    Hohmann IJGMP-a2008 [classification];
    > s.a. bianchi I models.
  @  Other solutions: Maluf & Kneip JMP(97)gq/95 [conical defects];
    Nashed gq/05 [axisymmetric];
    Nashed  MPLA(06) [Reissner-Nordström solutions],
    gq/06 [charged, spherical];
    > s.a. black holes; gödel solution;
      schwarzschild spacetime; spherical solutions;
      wormhole solutions.
  > Online resources:
    see eNotes page;
    Wikipedia page.
Hamiltonian Formulation
  * Gauge transformations:
    Because the flat connection introduces a notion of absolute parallelism,
    the theory does not have a Lorentz gauge symmetry, but it can be seen as
    a gauge theory of the translation group.
  @ General references: Maluf JMP(94),
    GRG(96);
    Blagojević & Nikolić PRD(00)ht;
    Blagojević & Vasilić CQG(00)ht [gauge symmetries],
    PRD(01)ht/00 [conservation laws];
    Maluf & da Rocha-Neto GRG(99)gq/98,
    PRD(01)gq/00;
    Sousa & Maluf PTP(00);
    Chee et al gq/01;
    Pimentel et al NCB(05)gq/04 [Hamilton-Jacobi approach];
    Okołów & Świeżewski CQG(12)-a1111;
    Okołów GRG(13)-a1111,
    GRG(14) [ADM-like formulation];
    Ferraro & Guzmán PRD(16)-a1609;
    Formiga a2004 [meaning of torsion];
    Blixt et al a2012 [rev]. 
  @ Energy, positivity:
    Mielke PRD(90);
    Chee PRD(03)gq/04 [self-dual].
  @ Energy, specific solutions:
    Maluf & Kneip gq/95 [Kerr];
    Maluf & da Rocha-Neto JMP(99)gq/98 [Bondi metric, static limit];
    da Rocha-Neto & Castello-Branco JHEP(03)gq/02 [Kerr and Kerr-AdS];
    Nashed MPLA(07)gq/06 [Kerr-Newman];
    Sharif & Jawad MPLA(10)-a1002 [black holes with non-linear electrodynamics source].
  @ Energy-momentum: Maluf GRG(98)gq/97,
    de Andrade et al PRL(00) [density];
    Maluf et al PRD(02)gq;
    Maluf 
      AdP(05)gq [and gravitational pressure];
    Blagojević & Vasilić CQG(02)gq [with cosmological constant];
    Maluf et al GRG(07)gq/05 [arbitrary tetrads, background subtraction];
    Xu & Jing CQG(06)gq [energy, stationary axisymmetric];
    Hermida de La Rica a0905 [conservation];
    > s.a. gravitational energy-momentum; gravitational radiation.
  @ Other quantities: Maluf et al CQG(06)gq [angular momentum];
    Castello-Branco & da Rocha-Neto PRD(12)-a1312 [energy, pressure, thermodynamics].
  @ Quantum theory: Mielke PLA(99) [lqg, connection formulation, states constructed from the translational Chern-Simons term];
    von Borzeszkowski IJMPA(02);
    Aldrovandi et al gq/05-conf,
    AIP(06)gq;
    Okołów GRG(14)-a1304 [kinematic quantum states],
    GRG(14)-a1305,
    GRG(14)-a1308 [variables];
    Haro JCAP(13)-a1309 [lqc, cosmological perturbations];
    > s.a. regge calculus.
Modified Versions and Related Concepts > s.a. Center of Mass;
  lattice gravity; Parallelizable Manifold;
  torsion in physics; unified theories.
  * Parametrized: A more
    general version, in which the curvature does not vanish; Paths can
    be taken to represent physical trajectories, and is used as basis
    for a unified theory of gravity and electromagnetism.
  @ Teleparallel equivalents for metric theories:
    Sotiriou et al PRD(11)-a1012 [and local Lorentz invariance].
  @ Other teleparallel gravity theories:
    Müller-Hoissen PRD(83) [two-parameter family of field Lagrangians];
    Kofinas & Saridakis PRD(14)-a1404 [Gauss-Bonnet gravity];
    Wanas et al G&C(17)-a1404;
    González & Vásquez PRD(15)-a1508 [Lovelock gravity];
    Cai et al RPP(16)-a1511 [f(T) theories and cosmology];
    Bahamonde & Böhmer EPJC(16)-a1606 [with Gauss-Bonnet contributions];
    Bahamonde et al CQG(19)-a1807 [extended, Noether symmetries and boundary terms];
    Itin et al EPJC(18)-a1808 [premetric thory];
    González et al JCAP(19)-a1905 [Lovelock gravity];
    > s.a. gauge theories of gravity; unimodular relativity.
  @ Other teleparallel theories:
    Maluf & Ulhoa a2010 [massless spin-2 fields].
  @ With matter: Mosna & Pereira GRG(04)gq/03 [coupling prescription];
    Salti & Aydogdu gq/05-wd [spin-1, Bianchi I models];
    Lobo et al a1901-MGXV
      [theory with non-metricity coupled non-minimally to matter];
    Huguet et al PRD(21)-a2008 [coupling to matter with Cartan connection];
    > s.a. tachyon fields.
  @ Born-Infeld-type modification: Ferraro & Fiorini PRD(07)-gq/06 [and inflation],
    PRD(08)-a0812 [in Weitzenböck spacetime].
  @ Other approaches and variations: Wanas et al ASS(95)gq/02 [path equations];
    Itin GRG(99)gq/98,
    GRG(99)gq/98,
    IJMPD(01)gq/99 [coframe version];
    Nester & Yo ChJP-gq/98 [non-metricity instead of torsion];
    de Andrade et al PRD(00) [for Kaluza-Klein theory];
    Kohler GRG(00) [semi-teleparallel];
    Fonseca IJMPA(02) [and equivalence principle];
    Obukhov & Pereira PRD(03) [metric-affine approach];
    Maluf & Faria PRD(12)-a1110 [conformally invariant];
    Formiga et al PRD(13)-a1302 [Weyl and Weitzenböck spacetimes and the electromagnetic field];
    Formiga IJTP(14)-a1401 [extension to Weyl geometry];
    Bahamonde et al PRD(15)-a1508;
    Junior & Rodrigues EPJC(16)-a1509;
    Ong & Nester EPJC(18)-a1709 [Lagrange multiplier formulation, pathologies];
    Beltrán et al PRD(18)-a1710 [symmetric, simpler geometric formulation of general relativity];
    Dupuis et al CQG(20)-a1906 [discretization, dual loop gravity].
  @ Parametrized: Wanas TJP(00)gq,
    gq/02-proc,
    gq/04;
    Wanas et al G&C(00)gq/98,
    in(03)gq/05 [spin-gravity interaction, COW results].
  @ Cosmology: Hohmann a2011-EPJP [linear perturbations];
    > s.a. defects; early-universe nucleosynthesis.
  > Other phenomenology:
    see energy conditions; gravitational radiation;
      gravitomagnetism.
  > Related topics:
    see metric matching.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2021