|  Loop Space Representation of Quantum Gravity | 
In General
  > s.a. canonical quantum gravity /  3D quantum gravity;
  holography in field theory; loops;
  quantum black holes; symplectic structures.
  * Idea: Originally formulated
    in terms of non-intersecting closed loops, now accomodates intersecting ones,
    and can be seen as equivalent to the (gauge-invariant) spin network formulation
    of the connection representation of canonical quantum gravity (note that what
    is usually meant by "loop quantum gravity" is the connection
    representation, not the loop representation).
  * Elementary variables:
    The small T-algebra (> see loop
    formulation of canonical general relativity).
  * Configuration space:
    Heuristically, diffeomorphism equivalence classes of multiloops.
  * States: Heuristically, they must
    be (generalized) knot/link invariants of Σ, from the diffeomorphism constraint.
  * Remark: Because the whole
    construction is gauge-invariant, operators corresponding to \(E^a{}_i\)
    cannot be constructed.
  * Action of operators:
\(\langle\)β| T[α]:= \(\langle\)β ∪ α| or \(1\over2\)(\(\langle\)β # α| − \(\langle\)β # α−1|) ;
\(\langle\)β| T a[α](s) := \({1\over2}\hbar G \displaystyle\oint\)dt (dβa(t)/dt) δ3(α(s); β(t)) (\(\langle\)β #s α| −\(\langle\)β #s α−1|) .
  * Solutions of the scalar
    constraint: The second coefficient of the Conway polynomial,
    a2 (for Λ = 0;
    probably not a3); The
    Kauffman bracket knot polynomial (for Λ ≠ 0).
  > Online resources:
    see Wikipedia page [loop representation in gauge theories and quantum gravity].
References
  > s.a. angular momentum; lattice gauge theories;
  models; quantum cosmology; quantum
  gauge theories [precursors].
  @ General: Rovelli in(88);
    Rovelli & Smolin PRL(88),
    NPB(90);
    Waldrop Sci(90)dec;
    Bezerra AP(90);
    Rayner CQG(90)
      [for (qab,
      pab) and for scalar field],
    CQG(90) [inner product and operators];
    Rovelli in(91);
    Gambini PLB(91);
    Loll NPB(91),
    ht/93;
    Baez in(94)ht/93;
    Pullin AIP(94)ht/93;
    Gambini & Pullin CQG(18)-a1802; Lim a2105.
  @ Reviews: Rovelli in(90);
    Smolin in(91);
    Brügmann LNP(94)gq/93;
    Gambini & Pullin 96;
    Rovelli & Upadhya gq/98;
    Pullin IJTP(99)gq/98-conf;
    Gaul & Rovelli LNP(00)gq/99-ln.
  @ And connection representation: De Pietri CQG(97)gq/96,
    gq/97-MG8;
    Thiemann JMP(98)ht/96 [loop transform].
  @ Constraints:
    Brügmann & Pullin NPB(93);
    Brügmann NPB(96)gq/95 [algebra];
    Gambini et al IJMPD(95)gq/94 [algebra].
  @ Hamiltonian: Rovelli & Smolin PRL(94)gq/93;
    Gaul & Rovelli CQG(01)gq/00.
  @ Solutions:
    Aldaya & Navarro-Salas PLB(91);
    Brügmann et al PRL(92),
    NPB(92),
    GRG(93);
    Gambini et al in(92);
    Gambini & Pullin gq/93-in [Gauss linking number];
    Di Bartolo et al JMP(95)gq;
    Hayashi CMP(96)qa/95 [Vassiliev invariants];
    Gambini & Pullin PRD(96)gq/95,
    CQG(96)gq;
    Griego NPB(96)gq/95,
    PRD(96)gq/95 [Jones polynomial].
  @ For non-compact spaces: Arnsdorf & Gupta NPB(00)gq/99;
    Arnsdorf gq/00-MG9 [asymptotically flat].
  @ On a lattice: Loll CQG(95);
    Ezawa MPLA(96)gq/95;
    Fort et al PRD(97)gq/96 [lattice knot theory].
  @ Related topics: Baez CQG(93),
    gq/94,
    ed-94 [knots, tangles];
    Griego NPB(96)gq [extended knots];
    Krasnov PRD(97)gq/96 [boundary states].
With Matter
  > s.a. matter phenomenology in quantum gravity; supergravity.
  @ Einstein-Maxwell: Gambini & Pullin PRD(93);
    Krasnov PRD(96)gq/95 [+ fermions].
  @ Fermions: Morales & Rovelli PRL(94)gq,
    NPB(95);
    Smolin gq/94 [and topology];
    Baez & Krasnov JMP(98)ht/97;
    Vlasov mp/99.
Variations, Generalizations
  @ Extended loop representation: Di Bartolo PRL(94)gq/93,
    PLB(96)gq [Gauß constraint],
    et al PRD(95)gq/94,
    JMP(95)gq;
    Shao et al IJMPA(02);
    Gambini et al a1907 [covariance].
  @ Related variables: Schilling JMP(96)gq/95 [generalized holonomies];
    Varadarajan & Zapata CQG(00)gq [fluxes].
  @ With torsion: Mullick & Bandyopadhyay IJMPA(96).
  @ Q-deformed: Major & Smolin NPB(96)gq/95;
    Borissov et al CQG(96)gq/95;
    Antonsen gq/97;
    Major CQG(08)-a0708;
    > s.a. spin networks.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 may 2021