|  Anti-de Sitter Spacetime | 
In General
  > s.a. geodesics; Penrose
  Limit; solitons; twistors.
  $ Def: A spatially open, constant-curvature
    cosmological solution of the Einstein equation with Λ < 0.
  * Topology: S1
    × \(\mathbb R\)3, with closed timelike curves; The
    universal covering space (usually considered) is \(\mathbb R\)4.
  * Properties: There are
    no Cauchy surfaces; It is conformal to half the Einstein cylinder.
  @ General references: in Hawking & Ellis 73;
    Barbot et al a1205 [open questions];
    Sokołowski IJGMP(16)-a1611 [geometry];
    > s.a. coordinates.
  @ Related metrics: Bengtsson & Sandin CQG(06)gq/05 [2+1, squashed and stretched];
    Magueijo & Mozaffari CQG(10)-a0911 [generalized].
  @ Quantum cosmology: Oliveira-Neto PRD(98) [Hartle-Hawking wave function, and cosmological constant quantization];
    Bentivegna & Pawłowski PRD(08)-a0803 [lqc].
  > Online resources:
    see Wikipedia page.
Fields and Perturbations > s.a. AdS-cft correspondence;
  monopoles; tensor networks [AdS/MERA correspondence].
  * Issue: AdS spacetime fails to be globally hyperbolic,
    so one needs to check to what extent field propagation in it is consistent and unambiguous.
  * Stability: 2015, The issue of the stability of
    the Einstein-scalar-field equations with negative cosmological constant is not settled.
  @ Classical fields: Ishibashi & Wald CQG(04)ht [general formulation];
    Henneaux et al AP(07)ht/06 [with scalar, Hamiltonian and asymptotics];
    > s.a. fields of arbitrary spin; klein-gordon fields.
  @ Stability: Abbott & Deser NPB(82) [and canonical formalism];
    Hawking CQG(00) [black holes and phase transitions];
    Nayeri & Tran ht/04;
    Faulkner et al CQG(10)-a1006 [with scalar field];
    Bizoń & Rostworowski PRL(11)-a1104 [generic instability triggered by turbulence];
    Dias et al CQG(12)-a1208 [non-linear stability];
    Friedrich CQG(14)-a1401;
    Horowitz & Santos a1408-in [and geons];
    Maliborski & Rostworowski PRL(13)-a1303 [non-linear stability around time-periodic solutions],
    IJMPA(13)-a1308,
    PRD(14)-a1403 [what drives the instability];
    Bizoń GRG(14)-a1312-GR20 [weak turbulence as a driving mechanism];
    Deppe et al PRL(15)-a1410 [in Einstein-Gauss-Bonnet gravity];
    Balasubramanian et al PRL(14)-a1403,
    comment Bizoń & Rostworowski PRL(15)-a1410,
    reply Buchel et al PRL(15)-a1506 [non-unstable and quasiperiodic solutions];
    Bizoń et al PRL(15)-a1506 [resonant system with oscillatory singularity in finite time];
    Gürsoy et al PRD(16)-a1603 [Einstein-scalar, dynamical instability];
    Deppe PRD(19)-a1606.
  @ Higher-dimensional: Metsaev PLB(02) [massless fields in AdS5];
    Bachelot JMPA(11)-a1010 [massive fields in AdS5].
  @ Particle detectors:
    Deser & Levin CQG(97);
    Jacobson CQG(98)gq/97;
    Jennings CQG(10)-a1008.
  > Quantum fields:
    see quantum field theory in curved backgrounds.
 Asymptotically AdS Spacetimes > s.a. black-hole solutions
  and thermodynamics; kerr solutions;
  schwarzschild spacetime; wormholes.
  * Idea: They can be defined by a conformal
    completion method similar to the asymptotically flat case; The difference is that
    \(\cal I\) is timelike (it has topology \(\mathbb R\)1
    × S2), and the charges are absolutely conserved in the
    absence of matter – no news; The asymptotic symmetry group at spatial infinity is O(3, 2).
  @ General references: Kelly & Marolf CQG(12)-a1202 [two types of phase space formulations];
    Hubeny et al JHEP(13)-a1306 [causal wedges].
  @ Conserved quantities:
    Ashtekar & Magnon CQG(84);
    Davis PLB(86);
    Henneaux & Teitelboim CMP(85);
    Henneaux in(86);
    Pinto & Soares PRD(95);
    Ashtekar & Das CQG(00)ht/99;
    Pinto-Neto & Rodrigues PRD(00)gq;
    Chruściel & Nagy CQG(01)ht/00,
    ATMP(01)gq [mass];
    Galloway et al CMP(03) [geometry and mass, soliton];
    Barnich et al NPPS(04)gq/03;
    Okuyama & Koga PRD(05)ht [higher-curvature and d ≥ 4];
    Hollands et al CQG(05)ht [comparison between definitions];
    Chruściel et al JHEP(06)gq [upper bounds on angular momentum and center of mass];
    Fischetti et al a1211-ch [rev];
    Wen a1503
      [mass, Hamiltonian and Wald formula, with matter couplings];
    Altas & Tekin PRD(19)-a1811 [new formulation];
    Aneesh et al CQG(19)-a1902;
    > s.a. charge.
  @ Locally asymptotically AdS spacetimes: Aros et al PRL(00)gq/99,
    PRD(00)gq/99 [charges];
    Anderson CQG(06)ht [uniqueness].
  @ Cosmological solutions: Hertog & Horowitz JHEP(05)ht [supergravity, singular, holographic];
    > s.a. de sitter space.
  @ In 3D: Carlip CQG(05)gq [asymptotic diffeomorphisms as dynamical degrees of freedom];
    Henneaux et al PRD(10)-a1006 [in topologically massive gravity];
    Bombelli & Mohd a1111-MG12 [global charges, trace anomaly];
    > s.a. 3D general relativity and gravity;
      3D black holes [including BTZ].
  @ Propagating fields: Warnick CMP(13)-a1202 [massive wave equation].
  @ In quantum gravity: Bodendorfer CQG(16)-a1512 [lqg].
  @ In higher dimensions: Clarkson & Mann PRL(06) [asymptotically AdS5/Γ, but less energy];
    Giovannini CQG(06) [5D].
  > Related topics: see action;
    causality violations; gravitational
    collapse; gravitational energy and positivity;
    killing tensors [Killing-Yano]; modified general relativity
    [anti-de Sitter tangent group]; Topologically Massive Gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 aug 2020