|  Quantum Geometry in Canonical Quantum Gravity | 
In General
  > s.a. 3D quantum gravity; phenomenology.
  * Twisted geometries:
    A discrete version of spacetime geometry that generalizes Regge triangulations
    by allowing torsion of the Ashtekar-Barbero connection on the 3D space slices.
  @ Reviews: Ashtekar gq/99,
    gq/01-conf;
    Barbero AIP(08)-a0804;
    Bojowald AIP(09)-a0910;
    Sahlmann JPCS(12)-a1112 [new ideas];
    García-Islas RMF-a1902.
  @ General references: Bojowald PRD(01)gq [inverse scale factor operator];
    Corichi & Zapata IJMPD(08) [loopy and fuzzy];
    Bahns et al CMP(11)-a1005;
    Tibrewala CQG(14)-a1311 [loop quantum gravity corrections, constraint algebra and general covariance];
    Schliemann PRD(14)-a1408 [quantum polyhedra].
  @ Twisted geometries:
    Freidel & Speziale PRD(10)-a1001,
    PRD(10)-a1006;
    Rovelli & Speziale PRD(10)-a1005 [and Regge geometries];
    Charles & Livine CQG(15)-a1501 [generalization to a q-deformed gauge group, and
      CQG+];
    Freidel & Livine GRG(19)-a1810 [bubble networks].
  @ Discreteness issue: Dittrich & Thiemann JMP(09)-a0708,
    comment Rovelli a0708;
    Kamiński et al CQG(08)-a0709 [dynamical sector].
  @ In 3D theory: Carlip CQG(91) [geometry from holonomies];
    Carbone et al CQG(02)gq/01,
    Pierri gq/02 [volume];
    Budd & Loll CQG(09)-a0906 [no evidence of discreteness].
  > Related topics:
    see gravitational thermodynamics.
Area Operators > s.a. 3D quantum
  gravity; canonical quantum gravity [covariant lqg].
  * Area operator: For a surface
    \(S\) it can be written as
\(\hat A_S = {1\over2}\, l_{\rm P}^2 \sum_{v\in S} (-O_{v,S})^{1/2}\;,\) with Ov,S = ∑I,J κI,J X iI X iJ = −[2 (J d, iv,S)2 + 2 (J u, iv,S)\(^2\) − (J d+u, iv,S)\(^2\)] .
* Area eigenvalues: For a general state in the kinematical Hilbert space,
aS = \(1\over2\)lP2 ∑v [2j dv (j dv+1) + 2j uv (j uv+1) − j d+uv (j d+uv+1)]1/2,
where all js are (consistent) half-integers; Thus, for a gauge-invariant state with no tangential edges to S,
aS = lP2 ∑v [j(j+1)]1/2 ;
    A spin network edge contributes 8πγ
    lP2
    [j(j+1)]1/2 to the area of
    a surface it intersects transversally.
  * Consequences: One can calculate
    the area of a black hole horizon and relate it to thermodynamical properties of
    black holes, as well as the Immirzi-parameter and SU(2)-vs-SO(3) ambiguities.
  @ General references: Rovelli in(93);
    Rovelli & Smolin NPB(95)gq;
    De Pietri & Rovelli PRD(96)gq;
    Ashtekar & Lewandowski CQG(97)gq/96;
    Frittelli et al CQG(96)gq;
    Loll CQG(97)gq/96;
    Krasnov CQG(98)gq/97,
    CQG(98)gq;
    Amelino-Camelia MPLA(98)gq [observability];
    Jiménez & Pérez PRD(08)-a0711 [effect of theta-parameter ambiguity];
    Engle & Pereira CQG(08)-a0710 [in new spin-foam model];
    Barbero et al PRD(09)-a0905 [new definition for spacetimes with inner boundary];
    Lim AHP(17)-a1705.
  @ And fermions: Montesinos & Rovelli CQG(98)gq;
    Ross GRG(01) [torsion and spin].
  @ Spectrum:
    Helesfai & Bene gq/03 [numerical];
    Corichi RMF(05)gq/04;
    Asato CQG(16)-a1506 [restriction from condition on cutting spin networks];
    Barbero et al CQG(18)-a1712 [eigenvalue distribution].
  @ Related topics: Khatsymovsky PLB(94)gq/93 [areas of timelike triangles, from Regge calculus];
    Bojowald & Kastrup CQG(00)ht/99 [spherical symmetry];
    Khriplovich PLB(02)gq/01 [and black-hole entropy];
    Livine & Terno gq/06 [renormalization and entanglement];
    Amelino-Camelia et al PLB(09)-a0812 [in Moyal non-commutative plane];
    Medved a1005
      [quantum black holes and a universal area gap];
    Adelman et al CQG(15)-a1401 [quantum volume and length fluctuations].
Volume Operators
  > s.a. chaos in classical gravity.
  * Idea: A suitably regularized version of
V(R) = ∫R |det E|1/2 , det E = \(1\over3!\)εabc εijk Eai Ebj Eck .
  * Ambiguity: There are two
    regularizations (internal, A&L; and external/loop, R&S), that can
    be resolved probably looking at the relationship with lengths and areas.
  * Eigenvalues: Non-trivial
    only from at least 4-valent vertices; Type-(1,1,1,1) vertices contribute
    l03
    (31/2/8)1/2.
  * Remark: The function
    VΣ is the generating functional
    of the co-triad; VΣ \(\mapsto\)
    eia
    by functional differentiation.
  @ General references: Rovelli & Smolin NPB(95)gq;
    De Pietri & Rovelli PRD(96)gq;
    Ashtekar & Lewandowski JGP(95)ht/94;
    Loll CQG(97)gq/96;
    Lewandowski CQG(97)gq/96 [Rovelli-Smolin vs others];
    Ashtekar & Lewandowski ATMP(97)gq;
    Giesel & Thiemann CQG(06)gq/05,
    CQG(06)gq/05 [consistency check];
    Hari Dass & Mathur CQG(07)gq/06 [matrix elements in loop basis];
    Flori & Thiemann a0812 [semiclassical analysis];
    Ding & Rovelli CQG(10)-a0911 [in covariant quantum gravity];
    Yang & Ma PRD(16)-a1602 [new volume and inverse volume operators];
    Astuti et al a1603 ["volume entropy"];
    Perlov a1806 [new approach];
    Ariwahjoedi et al GRG(19)-a1810 [Hermiticity];
    Kamiński a1906
      [ill-defined evolution of volume expectation values];
    Ling et al PLB(19)-a1907
      [quantum entanglement of boundary states and quantum geometry in the bulk].
  @ Spectrum: Thiemann JMP(98)gq/96;
    Brunnemann & Thiemann CQG(06)gq/04;
    Meissner CQG(06)gq/05;
    Brunnemann & Rideout CQG(06)gq-MGXI,
    CQG(08)-a0706,
    CQG(08)-a0706;
    Brunnemann & Rideout CQG(10)-a1003 [and matroids];
    Bianchi & Haggard PRD(12)-a1208 [Bohr-Sommerfeld quantization];
    Aquilanti et al JPA(13)-a1301 [hidden symmetries and  spectrum];
    Yang & Ma a1505 [graphical method].
  @ Lattice approach: Loll PRL(95)gq,
    NPB(96)gq/95,
    NPB(97)gq.
  @ Special cases: Bojowald & Swiderski CQG(04)gq [spherical symmetry];
    Neville PRD(06)gq/05,
    PRD(06)gq/05 [planar or cylindrical symmetry].
Other Operators and Quantities
  @ General references: Ariwahjoedi et al CQG(15)-a1404 [nodes, links, spins and observables];
    Alesci et al PRD(15)-a1507 [coherent state operators];
    Freidel & Pérez a1507 [2D surface boundaries of Cauchy slices];
    Goeller & Livine CQG(18)-a1805 [quadrupole moment operator];
    Becker & Pagani PRD(19)-a1810 [in the Asymptotic Safety scenario];
    Long & Ma PRD(20)-a2003 [in all dimensions].
  @ Length: Loll CQG(97)gq/96;
    Thiemann JMP(98)gq/96;
    Bianchi NPB(09)-a0806;
    Ma et al PRD(10)-a1004;
    Lecian a1708 [semiclassical].
  @ Angles: Major CQG(99)gq;
    Seifert gq/01-ug;
    Major & Seifert CQG(02)gq/01,
    Major CQG(10)-a1005 [atoms of geometry].
  @ Curvature: Alesci et al PRD(14)-a1403 [3D curvature operator];
    Ariwahjoedi et al IJGMP(15)-a1503 [2+1 lqg, curvatures and discrete Gauss-Codazzi equation];
    Lim RPMP(18)-a1803 [quantized curvature];
    Nemoul & Mebarki IJGMP(19)-a1803 [3D Ricci scalar curvature and edge length operators];
    Brunekreef & Loll a2011 [curvature profile].
  @ Spectral dimension: Modesto CQG(09)-a0812,
    a0905,
    CQG(09) [fractal, scale-dependent spectral dimension];
    Calcagni et al CQG(14)-a1311 [and kinematical states of lqg];
    > s.a. entanglement entropy.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 nov 2020