|  Spin Networks in Quantum Gravity | 
Original Penrose Version > s.a. quantum spacetime and
  discrete models; quantum technology.
  * Idea: A trivalent graph, with
    edges labelled by half-integers j  corresponding to representations
    of G = SO(3), subject to consistency conditions coming from spin
    composition rules (Clebsch-Gordan coefficients).
  @ References: Penrose in(70);
    Kauffman & Lins 94;
    Ruiz a1206
      [introduction, and invariants of 3-manifolds, decomposition theorem].
In Loop Quantum Gravity > s.a. 3D quantum gravity;
  quantum gauge theories; quantum spacetime;
  semiclassical quantum gravity.
  * Motivation: A complete,
    but not overcomplete, set of orthonormal states in the kinematical gauge
    theory Hilbert space.
  * Idea: "Colored
    graphs" for a group G, taken to be SU(2), i.e., triples S
    = (γ, j, I) of graphs
    γ with edges e labeled by irreducible representations
    je of SU(2), and vertices n
    by intertwiners; In the connection representation, spin network states are
ψS(A):= ∏e ∏n In R je(U(e, A)) .
  * Intertwiners: Maps
    Iv: ⊗incoming
    e  je →
    ⊗outgoing e
     je
    associated with vertices v of graphs.
  * Properties:
    \(\langle\)ψS |
    ψS'\(\rangle\) 
    = δγ, γ'
    δjj'
    δII',
    and the eigenvalues of area and volume operators are discrete.
  @ Precursors: Loll NPB(92),
    NPB(93);
    Smolin in(92).
  @ General references: Baez AiM(96)gq/94,
    in(96)gq/95;
    Rovelli & Smolin PRD(95)gq;
    Foxon CQG(95)gq/94;
    Borissov et al CQG(96)gq/95;
    Barbieri gq/97 [vertices];
    Barrett & Crane JMP(98)gq/97;
    Smolin gq/97;
    Reisenberger JMP(99)gq/98;
    Major AJP(99)nov-gq [primer];
    Barrett  & Steele CQG(03)gq/02 [asymptotics];
    Miković CQG(03)gq [and vacuum];
    Lorente gq/05-proc [rev];
    Conrady & Freidel JMP(09)-a0902 [and reduced phase space of tetrahedra];
    Dupuis & Livine PRD(10)-a1008 [lifting to projected spin networks];
    Freidel & Hnybida JMP(13)-a1201 [generating all SU(2) spin networks associated with a given graph];
    Schroeren FP(13)-a1206 [decoherence functional, decoherent histories formulation];
    Bitencourt et al LNCS-a1211-conf [asymptotic computations];
    Bonzom et al CMP(16)-a1504 [spin network generating series and Ising models];
    Shoshany a1912-PhD [and piecewise-flat geometries].
  @ Intertwiners: Bianchi et al PRD(11)-a1009 [and quantum polyhedra];
    Freidel & Hnybida CQG(14)-a1305 [new discrete and coherent basis];
    Dittrich & Hnybida a1312
      [2D Ising model and continuum limit with propagating degrees of freedom];
    Long et al PRD(19)-a1906 [coherent intertwiner solution].
  @ Evolution: Markopoulou gq/97,
    & Smolin NPB(97)gq,
    PRD(98)gq/97,
    PRD(98)ht/97;
    Borissov PRD(97)gq/96,
    & Gupta PRD(99)gq/98 [including dual triangulations];
    Miković CQG(01)gq [quantum field theory];
    Smolin & Wan NPB(08) [braid states];
    > s.a. spin-foam models.
  @ Spin webs: Lewandowski & Thiemann CQG(99)gq [all piecewise smooth].
  @ Coarse-graining: Dittrich et al NJP(12)-a1109,
    Dittrich NJP(12)-a1205 [and cylindrically consistent dynamics];
    Dittrich et al NJP(13) [dynamics of intertwiners];
    Livine CQG(14)-a1310 [and renormalization];
    Dittrich et al PRD(16)-a1609 [coarse-graining flow];
    Charles PhD-a1705.
  @ Invariants: Gambini IJTP(99),
    et al NPB(98)gq,
    Di Bartolo et al PRL(00)gq/99
    + CQG(00)gq/99,
    CQG(00)gq/99 [Vassiliev knot invariants];
    Carbone et al gq/99.
  @ Braid excitations: Wan a0710;
    Smolin & Wan NPB(08)-a0710;
    Wan NPB(09) [effective theory in terms of Feynman diagrams].
  @ Entanglement: Chirco et al PRD(18)-a1703 [and separability];
    Mele a1703-MS [quantum metric];
    Livine PRD(18)-a1709 [intertwiner entanglement];
    Baytaş et al PRD(18)-a1805 [guing polyhedra];
    Ling et al ChPC(19)-a1811 [with boundary];
    > s.a. entanglement entropy.
  @ With matter:
    Shoshany CQG(20)-a1911 [coupled to cosmic strings].
  @ Related topics: Freidel & Krasnov JMP(00)ht/99 [Feynman graphs];
    Lewandowski & Marolf IJMPD(98) [T* states];
    Zizzi Ent(00)gq/99 [holography];
    Ma & Ling PRD(00)gq [Q];
    Baez & Barrett CQG(01)gq [integrability];
    Pfeiffer ATMP(02)gq [positivity of evaluations];
    Miković a0706 [and graviton propagator];
    Rovelli & Vidotto PRD(10)-a0905 [BGS entropy];
    Borja et al CQG(11)-a1010 [U(N) framework];
    Långvik & Speziale PRD(16)-a1602 [twisted geometries, twistors and conformal transformations];
    Charles & Livine GRG(16)-a1603 [Fock space],
    GRG(17) [closure constraint as a Bianchi identity];
    Kocik JKTR(18)-a1807 [modified skein relations];
    Livine CQG(19)-a1902 [area propagator];
    Freidel & Livine GRG(19)-a1810 [bubble networks];
    > s.a. gravitational thermodynamics; string theory.
Modifications > s.a. supergravity.
  * Extended: Non gauge-invariant
    spin network states, given by quintuplets N = (γ,
    j, I, ρ, M).
  * Deformed: Edges of spin networks are
    enlarged to ribbons or tubes, so the network becomes a tubular, genus-g manifold,
    decomposable into trinions, separated by circles; Each circle is labeled by a representation
    of SU(2)q, each trinion by an intertwiner;
    Motivation are inclusion of a cosmological constant, symmetries.
  * Topspin networks: An extension of loop
    quantum gravity which allows topological information to be encoded in spin networks; It
    requires only minimal changes to the phase space, C*-algebra and Hilbert space of
    cylindrical functions.
  @ Deformed: Markopoulou & Smolin PRD(98)gq/97 [(p, q) string evolution];
    Barrett & Crane CQG(00)gq/99 [Lorentzian];
    Dupuis et al GRG(14)-a1403 [hyperbolic twisted geometries];
    > s.a. topological field theories.
  @ Braided ribbon networks: Hackett & Wan JPCS(11)-a0811 [and degeneracy of states];
    Hackett a1106 [invariants];
    Bilson-Thompson et al Sigma(12)-a1109 [and emergent braided matter];
    > s.a. Ribbons.
  @ Other generalizations: Ashtekar & Lewandowski CQG(97)gq/96 [extended];
    Baez & Sawin JFA(98)qa/97 [diffeomorphism-invariant];
    Ling JMP(02) [supersymmetric];
    Freidel & Livine JMP(03)ht/02 [non-compact G];
    He & Wan NPB(08)-a0805,
    NPB(08)-a0805 [framed, braid excitations and C, P, T];
    Duston CQG(12)-a1111 [topspin network formalism];
    Marcolli & van Suijlekom JGP(13)-a1301 [gauge networks in almost-commutative manifolds];
    Feller & Livine CQG(16)-a1509 [Ising spin network states];
    Perlov & Bukatin a1510 [without 3+1 slicing];
    Zuo a1607 [generalized to Kac-Moody algebra];
    Freidel et al CQG(19)-a1906 [tube networks carrying Virasoro representations].
Related Models and Topics
  > s.a. lattice field theory; spin foam;
  spin models; SU(2).
  @ References: Martins & Miković CMP(08)gq/06 [and 3-manifold invariants];
    Chen & Zhu IJMPA(08)-gq/07 [evolution of spin labels and self-organized criticality];
    Aquilanti et al PS(08)-a0901 [angular momentum recoupling in general];
    Amaral et al a1602-proc [quantum walk on a spin network];
    Anzà & Chirco PRD(16)-a1605 [emergence of a typical state, and quantum geometry];
    Mäkinen a1910-PhD
      [SU(2) recoupling theory and graphical methods].
  @ Numerical:
    Mielczarek a1801 [on a D-Wave machine];
    Li et al nComm(19)-a1712 [on a quantum simulator];
    Czelusta & Mielczarek PRD(21)-a2003 [qubit of space].
  > Related topics:
    see Fusion Coefficients; graph types;
    gravity and information.
Online Resources > see Greg Egan's page.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 17 feb 2021