|  Regge Calculus | 
In General
  > s.a. computational physics, numerical relativity
  / actions for general relativity; quantum regge calculus.
  * Idea: An approach to discretized
    (or, better, piecewise flat) geometry, used in numerical relativity and quantum gravity;
    Initially the simplex version was used, then 3+1 and continuous-time ones were developed,
    which were thought to be more useful for evolution questions and canonical quantization.
  * In numerical relativity:
    Used to be the main application, as a tool related to the finite-element method; 1991,
    Results usually agree well with continuum ones, except when a bounce occurs in collapse;
    2009, its second-order convergence to the continuum makes it non-competitive.
  * Variables: The metric for an
    n-dimensional manifold is given by assigning the lengths (squared) of all
    sides of all simplices in a fixed triangulation; This gives, for each simplex,
    n(n+1)/2 parameters (ok with counting of metric components); The
    kinds of metrics that can be given in this way are limited, because if one imagines
    the simplexes as superimposed on a smooth manifold, "all the curvature"
    is contracted at discrete points and the rest is flat;
    > s.a. simplex (Lorentzian case).
  * Hilbert-Einstein action:
    It can be expressed (up to some coefficient) by the exact formula
∫ R dv = ∑i η(i) A(i) ,
where the summation is over all (n−2)-simplexes i, of area A(i) (with A(i):=1 if n−2 = 0), and the defect angle η is η(i):= 2π − ∑σ ⊃ i θ(i;σ), where θ(i;σ) is the angle of the (n−1)-simplex σ at i.
References > s.a. curvature [Bianchi identities].
  @ Action: Lund & Regge pr(74);
    Hartle & Sorkin GRG(81) [boundary terms];
    Piran & Williams PRD(86);
    Brewin CQG(88);
    Miller CQG(97)gq;
    Khatsymovsky a0804 [Holst action, Immirzi parameter];
    Bahr & Dittrich PRD(09)-a0907 [improved and perfect actions];
    Romano a1107
      [Regge action and equations from statistical mechanics of Ising or Potts models].
  @ And general relativity: Cheeger et al in(82),
    CMP(84) [convergence of curvature];
    Friedberg & Lee NPB(84);
    Barrett CQG(87),
    & Parker pr(90);
    Brewin GRG(89),
    Brewin & Gentle CQG(01)gq/00;
    Kemmell IJTP(94);
    Chakrabarti et al CQG(99)gq/98 [geodesic deviation];
    Brewin GRG(00)-a1106 [as an approximation to general relativity].
  @ Continuum limit:
    Ôgami CQG(97) [2D action];
    Khatsymovsky PLB(02)gq [area variables];
    Bittner et al hl/03-in.
  @ Initial-value problem: Sorkin PRD(75);
    Piran & Williams PRD(86);
    Porter CQG(87);
    Barrett et al IJTP(97)gq/94 [parallelizable].
  @ Simple spaces and formulae: Hartle JMP(85),
    JMP(86);
    Piran & Strominger CQG(86).
  @ Geometry: Williams & Ellis GRG(81) [geodesics];
    Brewin CQG(88) [Riemann and extrinsic curvature],
    PRD(88) [trapped surface];
    Morse CQG(92) [approximate diffeomorphism invariance];
    McDonald & Miller a0804-in,
    CQG(08)-a0805 [dual tessellations and scalar curvature];
    Bahr & Dittrich CQG(09)-a0905 [gauge symmetries and constraints];
    Ariwahjoedi & Zen a1807 [and SO(3) and SU(2) representations].
  @ Affine tensor and exterior calculus: Warner PRS(82);
    Brewin JMP(86).
  @ Related topics: Roček & Williams in(82) [conformal transformations];
    Hamber & Williams NPB(97)ht/96 [gauge invariance].
Various Versions
  > s.a. discrete geometries; dynamical
  triangulations; lattice gravity.
  * Regge approach: Fix the triangulation
    and vary edge lengths; Typically use R2
    actions (bouded below) or the Einstein-Hilbert action.
  * Canonical: 1991, There is a
    problem with the closing of the constraint algebra.
  * Discrete time: Foliate the
    spacetime into hypersurfaces (e.g., spacelike), divide each one into convenient
    blocks in the same way (e.g., by simplices), then join corresponding vertices
    by edges (obtaining a total tessellation by prisms).
  * Null strut calculus: Build
    simplicial spacetimes with the maximal number of null edges; This reduces the
    number of variables and simplifies one type of equation, which becomes a
    linear relation between deficit angles.
  * Area variables: Unless restrictions
    are placed on the variation of the areas, in 4D this version leads to vanishing
    deficit angles and flat geometries.
  @ Regge approach: Hamber PRD(92) [phase transition];
    Brewin CQG(98)gq/97 [different implementation of Einstein equation].
  @ Canonical, constraints:
    Friedman & Jack JMP(86);
    Khatsymovsky CQG(94)gq/93;
    Mäkelä PRD(94);
    Tuckey & Williams CQG(90);
    Bander PRD(87) [d-dimensional, constraint algebra];
    Khatsymovsky GRG(95)gq/93,
    PLB(00)gq/99;
    Gambini & Pullin IJMPD(06) [and consistent discretization];
    Dittrich & Höhn CQG(10)-a0912;
    Dittrich & Ryan CQG(11)-a1006;
    Höhn PRD(15)-a1411 [linearized, Pachner moves and lattice gravitons].
  @ Connection / Ashtekar variable version:
    Khatsymovsky CQG(89),
    CQG(91),
    gq/93;
    Immirzi CQG(94)gq;
    Khatsymovsky CQG(10)-a0912,
      a1509.
  @ Discrete time: Porter PhD(82);
    Brewin PhD(83),
    CQG(87);
    Dubal PhD(87);
    Tuckey CQG(89),
    CQG(93)gq.
  @ Null strut calculus: Miller & Wheeler NC(85);
    Miller PhD(86);
    Kheyfets et al PRL(88),
    CQG(89),
    PRD(90),
    PRD(90).
  @ Area variables: Barrett et al CQG(99)gq/97;
    Mäkelä CQG(00)gq/98,
    & Williams CQG(01)gq/00;
    Wainwright & Williams CQG(04)gq [and discontinuous metrics];
    Dittrich & Speziale NJP(08)-a0802 [area-angle variables];
    Neiman a1308
      [ruling our some sectors of area Regge calculus];
    Asante et al CQG(18)-a1802;
    in Asante et al PRL(20)-a2004;
    Dittrich a2105
      [systematic analysis on a hyper-cubical lattice].
  @ First-order form: Barrett CQG(94)ht;
    Gionti gq/98.
  @ Linearization: Barrett PLB(87),
    CQG(88);
    Christiansen a1106 [3D, around a Euclidean metric].
  @ Variations:
    Brewin PRD(89) [ADM 4-momentum];
    Reisenberger CQG(97)gq/96 [left-handed];
    Bilke et al PLB(98)hl/97 [U(1) fields];
    Schmidt & Kohler GRG(01)gq [dislocations and torsion];
    Bahr & Dittrich NJP(10)-a0907
      [with constant-sectional-curvature simplices, for non-zero cosmological constant];
    > s.a. causality.
Types of Spacetimes
  > s.a. FLRW spacetime; bianchi I
  [Kasner]; quantum regge calculus.
  @ 2D: Beirl & Berg NPB(95)hl;
    Hamber & Williams NPB(95);
    Hartle & Perjés JMP(97)gq/96 [CP2];
    Rolf PhD(98)ht [quantum].
  @ 2D, random triangulations: Holm & Janke PLB(97)hl/96;
    Carfora et al CQG(02)gq.
  @ 3D, in general:
    Roček & Williams CQG(85);
    Boulatov & Krzywicki MPLA(91);
    Boulatov JHEP(98);
    Ariwahjoedi & Zen a1709 [curvatures].
  @ 3D, related topics:
    Waelbroeck CQG(90) [constraints];
    Durhuus & Jonsson NPB(95) [entropy];
    Hartle et al CQG(97)gq/96 [simplicial superspace].
  @ Black holes: Williams & Ellis GRG(84),
    Brewin CQG(93) [Schwarzschild];
    Káninský a2012 [with quantum matter fields].
  @ Taub universe: Tuckey & Williams CQG(88) [3+1, continuous time].
  @ Other types:
    Collins & Williams PRD(74) [Tolman];
    Porter CQG(87) [spherical symmetry],
    CQG(87) [model stars];
    Dubal CQG(89) [radiation],
    CQG(89),
    CQG(90) [collapse];
    Clarke et al CQG(90) [cosmic strings];
    Bilke et al PLB(97) [topology and free energy];
    Gentle CQG(99) [Brill waves, initial data];
    Khatsymovsky PLB(00)gq/99,
    PLB(00)gq/99 [simple model, path integral and canonical],
    PLB(03)gq,
    a0808 [discontinuous];
    Liu & Williams PRD(16)-a1502,
    a1510-proc [lattice and Λ-FLRW universes].
Other References > s.a. numerical
  general relativity; quantum spacetime.
  @ Intros, reviews:
    Regge NC(61);
    in Wheeler in(64);
    in Misner et al 73 [clear; good introduction];
    Williams NS(86) [I];
    Williams & Tuckey CQG(92);
    Immirzi NPPS(97)gq [comments];
    Gentle & Miller gq/01-MG9;
    Regge & Williams JMP(00)gq;
    Gentle GRG(02)gq/04 [numerical relativity];
    Larrañaga gq/03-ln [en español];
    Cuzinatto et al a1904 [intro].
  @ Geometrical aspects:
    Caselle et al PLB(89) [dual lattice];
    Miller FP(86);
    Jourjine PRD(87) [in terms of cell complex];
    Brewin CQG(88).
  @ Convergence, consistency: Brewin GRG(00)gq/95;
    Miller CQG(95)gq.
  @ Scaling, renormalization: Martellini & Marzuoli in(86);
    Mitter & Scoppola CMP(00)ht/98;
    Hamber PRD(00)ht/99.
  @ And matter: Weingarten JMP(77) [electromagnetism];
    Berg et al PRD(96) [SU(2) gauge theory];
    Khatsymovsky PLB(01)gq/00;
    Bittner et al PRD(02) [Ising spins];
    McDonald & Miller CQG(10)-a1002 [lattice action for scalar, vector, and tensor particles].
  @ For similar theories: Sorkin PhD(74),
    JMP(75) [electromagnetism];
    Pereira & Vargas CQG(02)gq [teleparallel gravity];
    D'Adda a2007
      [higher-order theories, with coordinates associated to vertices];
    > s.a. higher-order gravity.
  @ Gauge theory style: Weingarten NPB(82);
    Kawamoto & Nielsen PRD(91).
  @ Entropy:
    Ambjørn & Varsted PLB(91);
    Bartocci et al JGP(96)ht/94;
    Carfora  & Marzuoli JGP(95).
  @ (No) exponential bound, thermodynamic limit: Ambjørn & Jurkiewicz
      PLB(94);
    Catterall et al PRL(94);
    Carfora & Marzuoli JMP(95).
  @ Random simplices:
    Ambjørn et al NPB(93) [Euclidean];
    David in(95)ht/93;
    Carfora et al gq/03-in [2D].
  @ Random surfaces: Kostov & Krzywicki PLB(87); Polyakov 87;
    Ambjørn NPPS(95)hl/94,
    et al 97;
    Thorleifsson NPPS(99)hl/98.
  @ Random / polymerized manifolds:
    Gabrielli PLB(98);
    Harris & Wheater PLB(99)ht/98.
  @ Phase structure: Hamber PRD(92);
    Catterall et al PLB(94).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021