|  Modified Formulations of QED | 
Different Approaches to Quantized Maxwell Theory
  > s.a. QED; Stochastic Electrodynamics.
  @ Without second quantization:
    Barut et al PRA(88),
    Barut & Dowling PRA(89) [electron g − 2],
    PRA(90) [2-level atom];
    Barut PS(88) [rev];
    Morgan a0908 [empirically equivalent random field];
    Louis-Martinez MPLA(12)-a1107 [derivation of the Breit equation];
    Huang & Batelaan a1206
      [Random Electrodynamics coupled to a classical harmonic oscillator];
    Cetto et al a1301
      [atomic radiative corrections from the zero-point radiation field];
    Bennett AP(14)-a1406 [parametrized Dirac wave equation];
    > s.a. energy [self-energy];
  photons [against photons as physical objects].
  @ Other approaches: Oakley PS(90) [without the interaction picture]; Kijowski et al LMP(95) [in terms of gauge-invariant quantities];
    Bufalo et al PRD(11)-a1008 [path integral quantization];
    Francis EJTP(13)-gq/06 [using a finite-dimensional Hilbert space];
    Zarei et al IJTP(11) [Krein-space quantization];
    Marrocco a1504 [quantization using only classical concepts];
    Hodgson et al a2104 [quantization in position space].
  @ World-line methods: Dittrich & Shaisultanov PRD(00)ht [vacuum polarization].
  @ Without photons: Hainzl & Siedentop CMP(03) [mass and charge renormalization];
    Hainzl et al ARMA(09)mp/06,
    Sok a1407 [mean-field approximation].
Modified Theories > s.a. modified electrodynamics
  [including in media]; topological field theories.
  * Scalar electrodynamics: A well-known
    version is the Pauli-Weisskopf theory, but Majorana had developed an earlier theory.
  * Pseudo Quantum Electrodynamics (PQED):
    A generalization containing the pseudodifferential operator \(\square^{1/2}\); It plays
    an important role in the description of  electromagnetic interactions of charged particles
    confined to a plane, such as in graphene or in hetero-junctions displaying the quantum
    Hall effect.
  @ Massive / with photon mass:
    Esposito FP(02);
    Schroer EPJC(15)-a1504; 
    Belokogne & Folacci PRD(16)-a1512
      [Stückelberg electromagnetism in curved spacetime];
    Ferreira et al a2001
      [Carroll-Field-Jackiw electrodynamics with Lorentz violation, unitarity];
    > s.a. photon.
  @ Supersymmetric: Herzog & Klose NPB(10)-a0912 [atom-like bound states].
  @ With higher derivatives: Podolsky & Kikuchi PR(44) [Podolsky's electrodynamics];
    Accioly & Scatena MPLA(10) [limits on the coupling constant].
  @ Non-local electrodynamics:
    Chrétien & Peierls PRS(54);
    Scharnhorst PRS(95) [gauge];
    Mei a0902;
    Marino et al PRD(14)-a1408 [theories with fractional powers of the d'Alembertian operator];
    Modesto et al PRD(15)-a1506 [finite theory];
    Donoghue & El-Menoufi a1507 [and the curvature expansion].
  @ Scalar electrodynamics: Guendelman et al PLB(95)ht [and volume-preserving diffeomorphisms];
    Shvedov ht/04 [Hamiltonian, semiclassical];
    Esposito AdP(07)-a0710 [Majorana's theory];
    Bufalo & Pimentel PRD(13)-a1404 [BFV quantization];
    Beltran et al a1808 [and SDKP4];
    > s.a. modified electrodynamics.
  @ Non-linear theory: Azatov & Chkareuli PRD(06) [and Lorentz invariance];
    Chkareuli & Kepuladze PLB(06) [massive, and Lorentz invariance];
    Shabad & Usov PRD(11)-a1101 [causality and unitarity];
    Plimak & Stenholm a1104 [phase-space techniques].
  @ PT-symmetric: Milton CzJP(03)ht,
    CzJP(04)ht/03;
    Ford JPA(08)-a0807 [non-Hermitian, magnetic];
    Milton et al PTRS(13)-a1204 [and unitarity].
  @ With Lorentz symmetry violation: Ferrari et al GRG(17) [and torsional gravity, singular spinor fields];
    > s.a. lorentz-violating theories.
  @ With varying fine-structure constant:
    Ferrero & Altschul PRD(09)-a0910 [Lorentz and gauge symmetry violation]. 
  @ Other fields:  Savvidy a1005,
    a1111 [spin-3/2 field];
    Akhmeteli EPJC(13)-a1108 [based on spinor electrodynamics];
    Naudts a1506 [2D quantum harmonic oscillators];
    Drummond PRD(17)-a1603 [bimetric QED, and Lorentz violation].
  @ Other approaches: Scharf 95 [causal];
    Bender & Milton ht/98;
    Ribarič & Šušteršič ht/99;
    Razmi & Abbassi qp/99;
    Brana NCB(01) [without divergent self-interaction];
    Smith & Raymer NJP(07);
    Majumdar & Bhattacharjee a0904 [gauge-free];
    Rivera & Schuller PRD(11) [general linear electrodynamics];
    Sigal a1110-ln [non-relativistic, theory of radiation];
    Kowar a1111 [non-instant field model];
    Bufalo et al PRD(12)-a1212,
    IJMPA(17)-a1510 [renormalizability, causal approach];
    Schreck PRD(14)-a1311 [based on birefringent modified Maxwell theory];
    Naudts a1801-proc [transverse photons for Coulomb force].
  > Related topics: see boundaries [euclidean];
    Lee-Wick Electrodynamics; non-commutative gauge
    theory; photon [wave function]; Proca
    Theory; QED in curved spacetimes [including (quantum) gravity effects].
Schwinger Model > s.a. entanglement entropy.
  * Idea: A theory of 2D massless QED.
  @ References: Melnikov & Weinstein PRD(00)hl [lattice];
    Avossevou & Govaerts ht/02-proc [non-perturbative, gauge-invariant quantization];
    Muslih MPLA(03) [chiral, path-integral quantization];
    Bracken IJMPA(08)-a0710 [chiral, constraints and quantization];
    Belvedere et al JPA(11)-a0908 [at finite temperature].
  @ On general manifolds: Azakov IJMPA(06)ht/05 [on S1, path integral vs canonical];
    Stuart a1206
      [on S1, regularization and gauge invariance];
    Harder & DeLillo a1405 [in curved spacetime].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 apr 2021