|  Quantum Dirac Fields | 
Canonical Quantization
  * Creation / annihilation operators:
    Use as variables to quantize the coefficients of the expansion
ψ = ∑s ∑k (bk,s uk,s + dk,s† vk,s) ,
with {uk,s, vk,s} a complete orthonormal set of solutions; They satisfy
{bk,s, bk',s'†} = {dk,s, dk',s'†} = δkk' δss' .
* Scalar product:
(φ, ψ):= ∫Σ dn−1x φ* γ0 ψ = ∫Σ dn−1x φ†ψ .
@ References: Jing PRD(05) [finite V, Dirac vs reduced phase space]; Deckert et al JMP(10)-a0906 [in an external electrodynamic field]; Kaźmierczak a1010, a1011 [quantization without using Poincaré symmetry]; Bennett AP(14) [first-quantized electrodynamics].
Other Approaches and Features
  > s.a. QED; feynman propagator;
  green functions; path integrals.
  * Foldy-Wouthuysen representation:
    A representation of the Dirac matrices that does not connect positive with negative
    energy states; The position operator x differs from that in the usual Dirac
    representation by a unitary similarity transformation.
  @ Foldy-Wouthuysen:
    Foldy & Wouthuysen PR(50);
    Schweber 61;
    Jehle & Parke PR(65);
    Silenko PPNL(08)mp/06,
    Neznamov a0804,
    Neznamov & Silenko JMP(09)-a0906 [relationship with Dirac representation].
  @ Path integral: Nakamura JMP(97),
    JMP(00) [measure];
    Gosselin & Polonyi AP(98);
    Alexandrou et al PRA(99)ht/98 [massive];
    Polonyi PLB(99)ht/98-conf;
    Fosco et al AP(08) [2+1 dimensions];
    > s.a. path integrals for quantum feld theory.
  @ Semiclassical limit: Bolte & Keppeler PRL(98)qp,
    AP(99)qp/98 [time-evolution kernel, trace formula];
    > s.a. Zitterbewegung.
  @ Special states:
    Vollick PRD(98) [E < 0];
    Solomon CEJP(06)ht/04 [Maxwell-Dirac, spacelike energy-momentum];
    Campos et al PRA(14)-a1402 [non-classical states with positive Wigner function].
  @ And other fields: Aste EPJC(14)-a1307 [derivative coupling to a massless scalar field]. 
  @ Related topics:
    García-Chung & Morales-Técotl PRD(14) [polymer quantization];
    Manning a1512 [in rotating reference frames];
    Kim JHEP(17)-a1706 [entanglement, Rényi entropies, computations].
  > Special features and effects:
    see CPT theorem; dirac fields [pilot-wave model];
    Dirac Hole/Sea; entanglement;
    quantum field theory effects.
Curved Backgrounds > s.a. quantum field theory
  effects in curved spacetime and in different curved backgrounds.
  @ General references: Leclerc AP(07)gq/06 [Hamiltonian, covariant];
    Hack PhD(10)-a1008 [backreaction];
    Gosselin & Mohrbach EPJC(11)-a1009 [semiclassical approximation, effective couplings];
    Obukhov et al PRD(11)-a1106 [in strong gravitational fields];
    Cortez et al PRD(17)-a1608 [2+1 dimensions].
  @ Energy inequality: Fewster & Verch CMP(02);
    Dawson & Fewster CQG(06)gq [explicit bound].
  @ Black hole: Bolashenko & Frolov TMP(89);
    Singh PRD(05)gq/04 [spin and chiral dynamics];
    Belgiorno & Cacciatori CQG(08) [Reissner-Nordström-Anti-de Sitter];
    Casals et al PRD(13)-a1207 [Kerr solutions];
    Winstanley a1310-proc
      [massless fermion field on a non-extremal Kerr black hole].
  @ FLRW backgrounds:
    Montaldi & Zecca IJTP(94) [neutrinos],
    IJTP(98) [normal modes];
    Cortez et al PRD(15)-a1509,
    PRD(16)-a1603 [preferred Fock quantization];
    Cortez et al AP(17)-a1609,
    AMP(18)-a1803 [uniqueness of Fock quantization];
    Machado et al PRD(18)-a1811 [electron-positron pairs];
    > s.a. fields in FLRW spacetimes.
  @ Other backgrounds:
    Oriti NCB-gq/99-proc, gq/00/CQG [Rindler space; Unruh effect];
    Jin CQG(00) [static];
    Havare et al NPB(04)
      [de Sitter, particle creation];
    > s.a. fields in de Sitter space.
  @ Obstructions: Carey & Mickelsson LMP(00) [odd-dimensional manifold with boundary].
  @ Related topics: Sharipov m.DG/06 [massive, neutral];
    Smith CQG(07) [energy inequalities];
    Cianfrani & Montani IJMPA(08)-a0805 [localization and particles];
    Dappiaggi et al RVMP(09)-a0904 [and trace anomaly];
    Müller a1002 [Wick rotation];
    Sanders RVMP(10) [as a locally covariant quantum field theory];
    > s.a. 4-spinors; deformation quantization;
      field theory in non-commutative spacetime; types of quantum
      field theories.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2021