|  Torsion in Physical Theories | 
In General
  > s.a. torsion; torsion phenomenology.
  * Motivation: Torsion arises in
    string theory as an antisymmetric field, and would be required by the modification
    of general relativity that can accomodate the existence of gravitomagnetic monopoles.
  * Minimal coupling: It requires that the
    trace of the torsion tensor be a gradient, Ta
    = ∂aθ, and that the modified volume element
    τ = exp{θ} |g| dx1
    ∧ ... ∧ dxn be used in the action
    formulation of a physical model.
  * Electromagnetism: The coupling
    of torsion to the Maxwell field can be introduced in the Lagrangian density
    where q is a parameter, which leads to a modified photon dispersion relation.
  @ General references: Kalinowski IJTP(81) [and gauge theory, from Kaluza-Klein theory];
    Hehl & Obukhov a0711 [geometry and field theory];
    issue AFLB(07)#2-3;
    Lazar & Hehl FP(10)-a0911 [Cartan's spiral staircase and the gauge theory of dislocations];
    Bergman a1411
      [internal symmetry of a metric-compatible spacetime connection];
    Lahiri a2005-GRF [contorsion and effective fermion mass].
  @ Dynamics of torsion: Saa GRG(97)gq/96;
    Mosna & Saa JMP(05)gq [minimal coupling];
    Popławski gq/06,
    JMP(06);
    > s.a. differential forms.
  @ Singularities: García de Andrade FP(90),
    IJTP(90);
    Esposito NCB(90)gq/95,
    FdP(92)gq/95.
  @ Electromagnetism: Hammond GRG(88), GRG(91);
    Horie ht/95;
    de Andrade & Pereira IJMPD(99)gq/97;
    Filewood gq/98;
    Rubilar et al CQG(03) [and birefringence];
    Prasanna & Mohanty GRG(09) [photon propagation];
    Popławski a1108;
    Mannheim JPCS(15)-a1406 [magnetic monopoles and Faraday's law, Grassmann numbers].
  @ Other matter fields: Fabbri IJTP(18)-a1803 [spinor fields, non-causal propagation];
    Fabbri & Tecchiolli MPLA(19)-a1811 [torsion-spinor interaction];
    Barrientos et al a1903 [wave propagation];
    Delhom EPJC-a2002 [minimal coupling].
  @ Angular momentum conservation:
    Yishi Duan & Ying Jiang GRG(99)gq/98;
    Capozziello et al EPL(99)ap [fermion helicity flip].
  @ And topological invariants:
    Aouane et al CQG(07) [from integral of Nieh-Yan 4-form];
    Nieh IJMPA(07) [rev].
   Related topics:
    see lagrangian theories; lattice field theory;
    lorentz invariance; modified uncertainty
    relations; regge calculus; sound [acoustic torsion].
 Related topics:
    see lagrangian theories; lattice field theory;
    lorentz invariance; modified uncertainty
    relations; regge calculus; sound [acoustic torsion].
And Gravity, Theory
  > s.a. 2D gravity; 3D gravity;
  gravitation; Affine Gravity;
  Metric-Affine Gravity; MOND;
  non-commutative gravity.
  * Idea: A consistent theory of gravity
    with torsion emerged during the early 1960s as a gauge theory of the Poincaré group,
    which incorporates as the simplest viable cases the Einstein-Cartan(-Sciama-Kibble) theory,
    the teleparallel equivalent general relativity, and general relativity itself.
  * Couplings and gravity:
    It has been established that torsion couples to the spin of elementary particles
    (spin current of the Dirac field), and not to the particles' orbital angular momentum;
    The inclusion of torsion in the gravitational formalism leads to four-fermion interactions
    (though strongly suppressed in 4D).
  * Gravity: In the
    teleparallel theory of gravity, curvature and torsion are alternative ways
    of describing the gravitational field, and are consequently related to the
    same degrees of freedom; More general gravity theories, like Einstein-Cartan
    and gauge theories for the Poincaré and the affine groups, consider
    curvature and torsion as representing independent degrees of freedom.
  @ Books / Reviews: 
    de Sabbata & Sivaram 94;
    Arcos & Pereira IJMPD(04)gq/05;
    Aldrovandi & Pereira AFLB(07)-a0801.
  @ General references: Hehl et al RMP(76);
    López IJTP(77);
    Penrose FP(83);
    Hehl FP(85);
    Hammond GRG(90),
    GRG(94),
    GRG(94),
    CP(95) [II];
    Gangopadhyay & Sengupta ht/97 [symmetries];
    Fiziev gq/98-conf,
    gq/98;
    Garecki RGC(04)gq/01 [overview, T not needed];
    Mahato MPLA(02)gq/06 [G in Riemann-Cartan spacetime];
    Watanabe & Hayashi gq/04;
    Arcos & Pereira CQG(04);
    Mahato IJMPA(07)gq/06;
    Lecian et al gq/07-MGXI;
    Schücking a0803 [Einstein's theory is about torsion];
    Torres-Gómez & Krasnov PRD(09)-a0811 [theory with no black holes];
    Lledó & Sommovigo CQG(10)-a0907;
    Kleinert EJTP(10)-a1005;
    Hammond GRG(10)
    = IJMPD(10) [torsion is necessary];
    Gaitan IJMPA(10)-a1009 [contortion as a dynamical variable, Yang-Mills formulation];
    Garecki a1110-talk [updated overview, T not needed];
    Fabbri GRG(13);
    Olmo & Rubiera-García PRD(13)-a1306 [in Palatini theories of gravity];
    Fabbri a1703 [foundational approach];
    Diether & Christian PsJ-a1903
      [existence and non-propagation of gravitational torsion];
    Chakrabarty & Lahiri EPJP(18)-a1907 [and matter];
    Spindel a2102.
  @ Connection formulation:
    Montesinos JMP(99) [and Ashtekar-Barbero connection];
    Iosifidis et al GRG(19)-a1810 [duality between torsion and non-metricity].
  @ Hamiltonian analysis:
    de Sabbata & Ronchetti FP(99);
    Yang et al PRD(12)-a1201
      [R + T 2 action].
  @ And quantum gravity: Kim & Pak CQG(08)-gq/06;
    Singh CS(15)-a1512.
  @ With other fields: Israelit FP(98)-a0712,
    in(99)-a0712 [and electromagnetism];
    Megged ht/00 [gravity + Yang-Mills];
    Popławski IJTP(10) [Einstein-Maxwell-Dirac theory];
    Fabbri & Vignolo AdP(12)-a1201,
    Fabbri IJMPD(13)-a1211,
    IJGMP(15)-a1409 [Dirac fields];
    Khriplovich PLB(12)-a1201 [and four-fermion gravitational interaction];
    Fresneda et al BJP(15)-a1404 [Maxwell field];
    Fabbri et al PRD(14)-a1404,
    Fabbri & Vignolo MPLA(16)-a1504 [with Dirac fields];
    Fabbri IJGMP(17)-a1611 [Dirac matter fields as particles];
    Böhmer et al EPJC(18)-a1709 [mass of gravitating  particles].
  @ f(T) gravity: Linder PRD(10)-a1005;
    Yang EPJC(11)-a1007;
    Li et al PRD(11)-a1010 [and local Lorentz invariance];
    Yang EPL(11)-a1010 [conformal transformations];
    Ferraro & Fiorini PLB(11)-a1103;
    Wei et al PLB(12)-a1112 [Noether symmetry];
    Tamanini & Böhmer PRD(12)-a1204,
    a1304-MG13 [good and bad tetrads];
    Nashed AHEP(15)-a1403 [and local Lorentz transformations];
    Krššák & Saridakis CQG(16)-a1510 [covariant formulation];
    Otalora & Rebouças EPJC(17)-a1705 [causality violations];
    Beltrán Jiménez et al a2004 [Minkowski space];
    Golovnev & Guzmán a2012 [theoretical foundations];
    > s.a. bianchi I models; energy-momentum
      pseudotensor; kerr solutions; spherical solutions.
  @ f(T) gravity. Hamiltonian: Li et al JHEP(11)-a1105,
    Ferraro & Guzmán PRD(18)-a1802 [degrees of freedom];
    Blagojević & Nester a2006 [Lorentz invariance].
  @ f(R,T) gravity: Carvalho et al EPJC(21)-a2008 [Lagrangian ambiguity].
  @ Scalar-torsion theories: Kofinas PRD(15)-a1507 [black holes];
    Hohmann et al PRD(18)-a1801 [covariant formulation];
    Hohmann PRD(18)-a1801 [general formalism].
  @ Cosmology, other: Popławski AR(13)-a1106;
    Wanas & Hassan a1209;
    Velten & Caramês PRD(17)-a1702 [difficulties of f(R,T) gravity];
    Grensing GRG(21)
      [coupled to right-handed Majorana neutrinos, dark matter].
  @ Other higher-order theories:
    Hammond JMP(89),
    JMP(90) [second-order equations];
    Troncoso & Zanelli CQG(00)ht/99;
    Kruglov AFLB(07)-a0710 [quantum];
    Capozziello et al CQG(07),
    Capozziello & Vignolo AdP(10)-a0910-conf [metric-affine];
    Hernaski et al PRD(09)-a0905 [and massive gravitons];
    Nikiforova et al PRD(09);
    Helayël-Neto et al PRD(10)-a1005 [Einstein-Hilbert-Chern-Simons Lagrangian];
    Fabbri & Mannheim PRD(14)-a1405 [continuity of the torsionless limit];
    Vasilev et al EPJC(17)-a1706 [stability];
    de la Cruz-Dombriz et al PRD(19)-a1812 [infinite-derivative gravity with torsion].
  @ Higher-dimensional theories: Mukhopadhyaya et al PRD(02) [large extra dimensions],
    PRL(02) [in Randall-Sundrum scenario];
    > s.a. kaluza-klein models.
   Specific theories:
    see conformal, einstein-cartan,
    gauge theory, teleparallel,
    and unimodular gravity; low-spin
    field theories [spin-2 fields].
 Specific theories:
    see conformal, einstein-cartan,
    gauge theory, teleparallel,
    and unimodular gravity; low-spin
    field theories [spin-2 fields].
   Related topics:
    see action for general relativity; affine connections;
    conservation laws; energy conditions;
    McVittie Metric; torsion phenomenology.
  Related topics:
    see action for general relativity; affine connections;
    conservation laws; energy conditions;
    McVittie Metric; torsion phenomenology.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 apr 2021