|  Path Integrals for Specific Theories | 
Non-Relativistic Mechanics > s.a. formulations
  of classical mechanics; histories formulations;
  statistical mechanics.
  * Results: All
    quantities of interest can be obtained from the Green's function
    \(\langle\)q', t' | q, t\(\rangle\)
    = G(q', t'; q, t):
  - Spectrum: Use
\(\langle\)q', t' | q, t\(\rangle\) = ∑n ψn(q') ψn*(q) exp{−i En(t'−t)} ,
    and perform Fourier transforms;
  - Ground state:
    Euclideanize and take the limit t → ∞.
  * Smoothness: One has to
    include all continuous paths; The use of the Wiener measure then is ok,
    and includes the contribution from the action, even if the latter is
    not well-defined for all paths.
  * Euclideanized version: It is
    often convenient to evaluate the integral (extending analytically the integrand
    to complex t) in imaginary time, with t = −iτ,
    and later extend to real t; Then exp(iS/\(\hbar\)) \(\mapsto\)
    exp(−SE/\(\hbar\)), which looks like
    a partition function in statistical mechanics, with \(\hbar\) replacing kT,
    and thermal fluctuations replaced by quantum ones; Often \(S_{\rm E}\) is
    positive definite, and the integral thus exponentially damped.
  * Relationships: Choosing a space
    of paths is equivalent to choosing a polarization in geometric quantization.
  @ General references: Dirac PZS(33),
    RMP(45);
    Feynman RMP(48);
    DeWitt-Morette CMP(72),
    CMP(74),
    et al PRP(79);
    Klauder PRD(79);
    Hartle PRD(91);
    Anderson PRD(94)gq/93;
    Gudder JMP(98);
    Ansoldi et al EJP(00)qp/99 [propagator, simple].
  @ Spectrum calculations: Feynman PR(55) [electron in polarizable lattice, lowest energy];
    Stojiljković et al PLA(06) [efficient calculation].
  @ Related topics: DeWitt-Morette & Zhang PRD(83) [conservation laws];
    Kleinert PLB(89) [approximate formula];
    Kleinert & Chervyakov PLB(99)ht,
    PLB(00)ht/99 [reparametrization invariance];
    Greenberg & Mishra PRD(04)mp [parastatistics];
    Field AP(06) [applications];
    Grujić et al PLA(06) [energy expectation values];
    Albeverio et al a1907 [with magnetic field, rigorous];
    > s.a. parametrized theories;
      path integrals [including non-standard analysis].
Other Systems
  > s.a. black-hole radiation; constrained
  and dissipative systems; quantum theory and
  formulations; quantum oscillator.
  @ General references: Edwards & Gulyaev PRS(64) [free particle, curved coordinates];
    Fujikawa NPB(97)ht/96,
    ht/96-proc [H atom];
    Strunz PRA(96) [open];
    Grosche PS(98) [radial Coulomb];
    Asorey et al JPCS(07)-a0712 [with boundaries].
  @ Supersymmetric quantum mechanics:
    Catterall & Gregory PLB(00);
    Fine & Sawin CMP(08)-a0705 [on a Riemann manifold, rigorous];
    Ludewig a1910.
  @ Solvable ones:
    Dykstra et al PLB(93);
    Grosche & Steiner ht/93;
    Grosche ht/93,
    JPA(95),
    JPA(96).
  @ With H unbounded below:
    Carreau et al AP(90).
  @ Simple potentials: Goodman AJP(81)sep [infinite well];
    Nevels et al PRA(93) [infinite barrier];
    Duru a1911 [pendulum potential].
  @ Spinning: Lemmens PLA(96) [Ehrenfest model];
    Cabra et al JPA(97);
    Ünal FP(98);
    Lopez & Stephany ht/00-proc;
    Grinberg PLA(03) [Ising and XY models];
    Kowalski-Glikman & Rosati a1912 [arbitrary spin];
    > s.a. quantum particles.
  @ Non-commutative theories:
    Kempf ht/96;
    Dragovich & Rakić TMP(04)ht/03;
    Gitman & Kupriyanov EPJC(08)-a0707;
    Neves & Abreu a1206.
  @ Brownian motion:
    Lavenda PLA(79);
    Stepanov & Sommer JPA(90);
    Watabe & Shibata JPSJ(90);
    Botelho NCB(02),
    NCB(03).
  @ Integrable systems: Anderson & Anderson AP(90).
  @ On discrete spaces:
    Dorlas & Thomas JMP(08);
    Ajaib a1403 [1D, and Euclidean propagator];
    Penney et al NJP(17)-a1604 [quantum circuit];
    Tyagi & Wharton a2103 [for multi-qubit entangled states];
    > s.a. cellular automaton.
  @ Other configuration spaces: Farhi & Gutmann IJMPA(90) [half-line];
    Toms ht/04 [curved, Schwinger action principle];
    Inomata & Junker PLA(12) [on a conical space];
    Sakoda a1804,
    a1809
      [particle in a finite interval and on the half-line].
  @ With no action / Lagrangian: Kazinski et al JHEP(05)ht [Lagrange structure];
    Sharapov IJMPA(14)-a1408 [Peierls bracket].
  @ Related topics:
    Balaban CMP(85) [3D];
    Caves PRD(86),
    PRD(87);
    Gangopadhyay & Home PLA(88);
    Gavazzi JMP(89) [fermions];
    Zhao & Pan PLA(89) [Zassenhaus formula];
    Junker JPA(90);
    Tolpin AP(90);
    Bitar et al PRL(91);
    Loo JPA(00)mp [with vector potential];
    Muslih mp/00,
    mp/00 [singular system];
    Andrzejewski et al PTP(11)-a0904 [higher-derivative theories];
    Cahill a1501,
    Amdahl & Cahill a1611
      [actions that are not quadratic in their time derivatives];
    Vanchurin a1912 [strongly coupled, dual system path integrals];
    > s.a. casimir effect; Darboux Space;
    knots in physics; quantum computing;
    quantum particle models; scattering.
Relativistic Particle Mechanics > s.a. quantum particle models.
  * Remark: Here the path
    can move forward and backward in time; Interpreted as pair creation.
  @ General references: Redmount & Suen IJMPA(93);
    Halliwell & Ortiz IJMPD(94)gq/93 [composition law for propagator];
    Kleinert PLA(96) [spinless, Coulomb potential];
    Chiou CQG(13)
      [timeless, as integral over paths in the constraint surface];
    Padmanabhan a1901
      [lattice regularization, conceptual and pedagogical issues];
    Koch & Muñoz PRD-a2012.
  @ Fermions / Dirac: Kull & Treumann IJTP(99)qp;
    Gaveau & Schulman AP(00);
    Ichinose CMP(14);
    see also Feynman's chessboard.
  @ In curved spacetime: Hawking CMP(77);
    Toms PRD(87);
    Grosche PLA(88);
    Kleinert AP(97)ht/96;
    Bastianelli et al PLB(00) [dimensional regularization];
    Tanimura ht/01-proc,
    IJMPA(01) [manifold with symmetries];
    Krtouš CQG(04);
    Singh & Mobed MPLA(12)-a1008 [new approach].
  @ Phase-space path integrals for systems on Riemannian manifolds:
    Kuchař JMP(83);
    Ferraro & Leston IJMPA(01).
Quantum Field Theory > see gauge theories, quantum gravity and quantum field theories; non-commutative fields and gauge theories.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 6 may 2021