|  Klein-Gordon Fields | 
In General > s.a. klein-gordon fields in curved
  spacetime [and different media]; scalar field theory.
  * Hamiltonian: For a scalar field
    φ(x) of mass m (and conjugate momentum
    π(x)), the Hamiltonian on a spacelike hypersurface Σ is
H = \(1\over2\)∫Σ (π2 + ∇φ · ∇φ + m2φ2) d3x , π = dφ/dt .
* Field equation: The usual form is (if the field is complex, replace one of the φs by φ*, to get a real \(\cal L\))
\(\square\)φ − m2φ = 0 , from the Lagrangian \(\cal L\) = −\(1\over2\)|g|1/2 (gab ∇aφ ∇bφ + m2φ2) .
  * Interpretation: It cannot be
    interpreted as a single-particle equation because (1) It has negative-energy
    solutions; (2) The current j a
    does not give a positive-definite probability density ρ; There is no
    problem however if it is treated as a (classical or quantum) field equation.
  * Solutions: A complete set is
    uk(x) = [2ω
    (2π)n−1]−1/2
    exp{i k · x}, ka
    = (ω, k), k2
    = −m2; They are eigenfunctions of
    ∂/∂t, with eigenvalue −iω, and orthonormal
    with respect to the Klein-Gordon inner product below.
  @ General references: Wald 84, p461;
    Oshima et al ht/05 [real vs complex];
    Gravel & Gauthier AJP(11)may [classical applications];
    Dai a1106 [Hamiltonian with appropriate surface terms].
  @ Derivation from classical  theory: Lehr & Park JMP(77);
    Santamato JMP(84) [Weyl curvature];
    Morato PLA(91);
    Alonso-Blanco a1201
      [as a compatibility condition for Maxwell-Lorentz dynamics in Newtonian mechanics];
    Andriambololona et al a1401
      [derivation of field equations using dispersion-codispersion operators];
    Donker et al AP(16)-a1604 [logical inference approach].
  @ And pilot-wave theory: Horton et al JPA(00)qp/01,
    comment Tumulka JPA(02)qp,
    qp/02;
    Horton & Dewdney qp/01.
  @ In a box: Koehn EPL(12)-a1301 [infinite square-well potential with a moving wall];
    Alberto et al EJP(18)-a1711 [Klein-Gordon vs Dirac equations].
  @ Other solutions: Hinterleitner JMP(96) [separation of variables in 2+1 dimensions];
    Fodor & Rácz PRD(03)ht [expanding shells];
    Gönül ChPL(06)qp [bound states and non-relativistic limit];
    Mosley a0707 [wave packets];
    Tolish & Wald PRD(14)-a1401 [particle on a null geodesic, retarded solution].
  @ Superluminal waves: Borghardt et al PLA(03)qp;
    > s.a. klein-gordon fields in curved spacetime.
  @ Interpretation: Wharton AIP(07)-a0706,
    AP(10) [new probabilistic interpretation];
    Heaney FP(13) [Symmetrical Interpretation];
    Sutherland a1509 [and retrocausal influences];
    Kazemi et al a1802 [new probability current density].
    @ (1+1)-dimensional: Hall PLA(07)-a0707 [with non-singular Coulomb-like potential];
    Opanasenko & Popovych a1810 [generalized symmetries and conservation laws].
  @ Related topics: Kyprianidis PLA(85) [and particle trajectories];
    Grössing PLA(02) [sub-quantum Brownian movement];
    Comay Ap(04)qp/03,
    Ap(05)qp/04 [difficulties];
    Semenov et al PLA(08)ht/07 [states with positive norm];
    Hall PRA(10) [comparison theorem for energy eigenvalues];
    Wong JMP(10) [in hydrodynamical form];
    > s.a. thermodynamic systems.
Space of Klein-Gordon Fields > s.a. complex structures.
  * Inner product: For φ,
    ψ: Σ → \(\mathbb C\), with Σ a spacelike hypersurface
    in spacetime, the Klein-Gordon inner product is
\(\langle\)φ | ψ\(\rangle\)KG:= i ∫Σ (φ* ∇m ψ − ψ ∇m φ*) dsm = i ∫Σ (φ*ψ,t − ψ φ*,t) dn−1v .
    * Properties: Independent of
    Σ, because j a:= −i
    (φ* ∇a ψ −
    ψ ∇a φ*) is a
    conserved current; Positive-definite only if restricted to (combinations of) positive-frequency
    solutions of the Klein-Gordon equation (according to the timelike vector field t).
  * Symplectic structure:
  @ Hájíček & Isham JMP(96)gq/95 [in curved spacetime].
  * Observables:
  @ Inner product:
    Mostafazadeh gq/02 [positive-definite],
    CQG(03)mp/02 [Hilbert space],
    & Zamani AP(06)qp [covariant];
    Kleefeld CzJP(06)qp.
Modifications and Quantization
  > s.a. dispersion; klein-gordon quantum field
  theory; scalar fields; Sine-Gordon Equation.
  @ General references: Adler & Santiago ht/99 [\(\hbar\) = \(\hbar\)(k)];
    Santos & Silva JMP(05)mp [variable mass, Wigner-Moyal];
    Arminjon in(07)-a0706 [from quantum mechanics];
    Das CJP(10)-a0811 [covariant discrete phase space];
    Thibes a2011 [higher-order generalization];
    Giardino a2105 [quaternionic].
  @ Fractional Klein-Gordon fields:
    Lim & Teo a1103 [and Casimir effect];
    Garra et al JSP(14)-a1308 [and related stochastic processes].
  @ Quantum-gravity corrections: Cheon IJTP(78) [with fundamental length, Bopp equation];
    Jacobson & Mattingly PRD(01)ht/00 [with high-f dispersion];
    Moayedi et al IJTP(10)-a1004,
    Jana & Roy PLA(09)-a0902 [with minimal length].
  @ Non-linear:
    Man'ko et al PLA(95) [q-deformed, and other non-linearities];
    Perel & Fialkovsky a0712 [arbitrary dimensionality];
    Smolyakov JPA(10)-a0910 [Klein-Gordon-Maxwell, no-go result].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021