|  Noether Symmetries / Theorem | 
In General > s.a. hamiltonian
  and lagrangian symmetries / symmetries.
  * Idea: Exploit a symmetry of
    a theory so as to reduce the number of variables needed to treat a problem.
  * History: Soon after
    Hilbert's discovery of the variational principle for general relativity,
    people including Hilbert, Klein, and Einstein were concerned about the
    failure of local energy conservation in the theory; Noether's theorems
    solved the problem.
  $ Def: To every continuous
    symmetry Δxa
    = Xab
    δωb, Δφ
    = Φa
    δωa
    of the Lagrangian for a field theory there corresponds a conserved current
    J ab
    with ∂a
    J ab
    = 0, and a conserved quantity, the charge Qb:
J ab:= (∂\(\cal L\)/∂(∂aφ)) Φb − θ ac X cb , Qb:= ∫Σ dSa J ab.
  @ Books, reviews: Neuenschwander 11;
    Bañados & Reyes IJMPD(16)-a1601 [pedagogical, and boundary terms];
    Leone a1804 [intro, and Routh reduction].
  @ General references: Noether NKGG(18)
      [translation TTSP(71)phy/05];
    Govinder & Leach PLA(95) [integrals];
    Fatibene et al a1001 [and covariant conservation laws, rev];
    Tsamparlis & Paliathanasis GRG(11) [geometric nature];
    Francaviglia et al a1309-conf [epistemological implications];
    Neuenschwander AJP(14)mar [in the undergraduate curriculum];
    Silagadze EJP(15)-a1507 [invariance of the Noether charge];
    Deser a1905,
    Brown a2010 [the converse result].
  @ History: Byers phy/98;
    Quigg a1902 [colloquium];
    Kosmann-Schwarzbach a2004-in.
  @ Second theorem: Gogilidze & Surovtsev ht/96 [and constraints];
    Bashkirov et al JPA(05)m.DG/04 [generalized setting],
    JMP(05)mp/04 [BRST symmetries];
    Cariñena et al m.DG/05 [gauge symmetries in classical mechanics];
    Navarro & Sancho IJGMP(14)-a1312-conf [on any natural bundle].
  @ And Killing vectors:
    Bokhari & Kara GRG(07);
    Hussain GRG(10).
  @ Hamiltonian / canonical version:
    García & Pons IJMPA(01)ht/00;
    Struckmeier JPCS(12)-a1206;
    Herman a1409-MS [and the Legendre transform];
    Sardanashvily a1510
      [all conserved quantities as symmetries].
  @ Quantum version: Brown & Holland AJP(04)jan [first theorem, and electromagnetism];
    Albeverio et al JMP(06);
    Lima et al AP(12)-a0912 [for gauge theories with anomalies].
  @ Related topics: Sanyal & Modak CQG(01)gq [and field couplings];
    Butterfield phy/05-fs;
    Bokhari et al IJTP(06) [and spacetime isometries];
    Bering a0911-proc [proof, for a fixed integration region];
    Dallen & Neuenschwander AJP(11)mar [in a rotating frame];
    Pons JMP(11) [energy-momentum tensors and conformal symmetry];
    Fiorani et al a1505 [Lie algebras of conservation laws];
    Baez a2006 [algebraic approach].
In Specific Theories > s.a. energy-momentum
  tensor; quantum theory in curved spaces.
  @ Classical mechanics:
    Desloge & Karch AJP(77)apr;
    Sardanashvily mp/03;
    Marinho EJP(07),
    comment Rejmer EJP(09);
    > s.a. classical particles.
  @ Gauge theories / quantum field theories:
    Buchholz et al AP(86);
    Karatas & Kowalski AJP(90)feb;
    Danos FP(97)ht;
    Fatibene et al JMP(97);
    Julia & Silva CQG(98)gq;
    Gràcia & Pons JMP(00)mp;
    Bashkirov JPA(05) [reducible gauge symmetries];
    Darvas a0811 [new conserved current];
    Avery & Schwab JHEP(16)-a1512 [second theorem and Ward identities for gauge symmetries].
  @ Gravity: Sorkin PRS(91) [Noether operator, and electromagnetism];
    Majhi & Padmanabhan PRD(12),
    Majhi AHEP(13)-a1210
      [Noether charge from Einstein-Hilbert action, and Bekenstein-Hawking entropy];
    Petrov & Lompay GRG(13)-a1211 [metric theories];
    > s.a. energy-momentum; multipole moments.
  @ In cosmological models: Vakili PLB(08)-a0804;
    Paliathanasis et al PRD(14) [scalar-tensor cosmology];
    > s.a. minisuperspace models.
  @ Other applications: García & Pons IJMPA(00)ht/99 [constrained systems];
    Hanc et al AJP(04)apr [examples and teaching];
    Fan PRD(18)-a1801 [and equations of motion, holographic transport];
    Cîrstoiu et al PRX(20) [open quantum systems].
Generalizations > s.a. symmetries [and conservation laws].
  @ General references: Rosen AP(72),
    AP(74),
    AP(74);
    Torres m.OC/03-conf [non-smooth solutions];
    Fassò & Sansonetto IJGMP(09) [non-holonomic];
    Hydon & Mansfield PRS(11)-a1103 [simple local proof and extension to finite-difference systems];
    Marvian & Spekkens nComm(14)-a1404 [quantifying the asymmetry of quantum states];
    Fiorani & Spiro JGP(15)-a1411 [Lie algebras of conservation laws];
    Finster & Kleiner a1506 [for causal variational principles];
    Halder et al a1812.
  @ More general types of symmetries: Lunev TMP(90) [non-local symmetries];
    Govinder et al PLA(98) [approximate symmetries];
    Paal in(09)mp/06,
    CzJP(06)mp-conf [from Moufang transformations];
    Agostini et al MPLA(07)ht/06,
    Arzano & Marcianò PRD(07)ht,
    Amelino-Camelia et al PTPS(07)-a0710-conf [for Hopf-algebra spacetime symmetries];
    Cicogna & Gaeta JPA(07) [for μ-symmetries];
    Alamino a1305
      [symmetry on average, and Noether's theorem with dissipative currents];
    Webb & Mace JPP(15)-a1403 [fluid relabelling symmetries];
    Zhang et al a1903 [scaling symmetry];
    Bravetti & Garcia-Chung a2009 [geometric approach].
  @ Higher-order Lagrangians:
    Gràcia & Pons JPA(95);
    Townsend a1605.
  @ More general types of theories:
    Cariñena & Rañada LMP(88) [singular Lagrangians];
    Magro et al AP(02)ht/01 [superfields];
    Holman a1009
      [for field theories formulated in Minkowski spacetime];
    Baez & Fong JMP(13)-a1203 [for Markov Processes];
    Sardanashvily a1411
      [reducible degenerate Grassmann-graded Lagrangian theories];
    Kegeles & Oriti JPA-a1506,
    Krivoruchenko & Tursunov a1602 [non-local theories];
    Anco a1605-in
      [non-variational partial differential equations];
    Peng a1607 [differential-difference equations];
    D'Ambrosio a1902 [discrete covariant mechanics];
    > s.a. higher-order lagrangians [non-local].
  @ Non-Lagrangian theories: Kaparulin et al JMP(10)-a1001;
    Delphenich a1109 [based on the virtual work functional].
  @ More general settings: Agostini IJMPA(09)-a0711 [in κ-Minkowski];
    Muslih a1003 [for fractional classical fields];
    González & Cabo FP(18)-a1709 [stochastic version].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 may 2021