|  Classical Relativistic Particles | 
In General > s.a. particles; particle
  models / geodesics; self-force;
  test-body motion.
  $ Action, reparametrization-invariant:
    Two versions, which give the trajectory only as a locus of points, are
S1[x] = m0c ∫ ds |gab x·a x·b|1/2 = ∫ dt (pa x·a − \(1\over2\)g p2) or S2[x] = \(1\over2\)∫ dt (u−1 gab x·a x·b − um2) ;
    Here, S1 (Jacobi-type) is proportional
    to the world-line length, g(t) is a 1D metric/Lagrange multiplier,
    as in 1D gravity with scalars, and u(t) is an additional variable.
  $ Action, proper-time-gauge:
S[x] = \(1\over2\)m0 ∫ dt gab x·a x·b .
* Equation of motion: If a particle is coupled to a field, its equation of motion is just the expression of momentum exchange between particle and field, so it can be obtained from ∇a Ttotab = 0; For a scalar particle in electromagnetic field and linearized gravity, respectively,
dpm/dτ = q Fmn un = (q/m) Fmn pn , dpm/dτ = (κ/2) m hab,m uaub .
  * Issue: The descriptions
    using t and the proper time τ are not equivalent
    [@ Kalman PR(61);
    Sonego PRA(91)].
  * Issue: If a point particle
    is included among the field sources, the treatment cannot be made fully consistent.
  @ General references: Walstad AJP(18)oct-a1512 [momentum and kinetic energy, thought experiment].
  @ Lagrangian formulation: Potgieter AJP(83)jan,
    comment Berger AJP(84)may;
    Desloge & Eriksen AJP(85)jan.
  @ In curved spacetime: Muñoz IJTP(77) [weak-field approximation, Lorentz-force form];
    Modanese JMP(92) [fluctuating gravitational field];
    Piechocki CQG(03)gq/02 [de Sitter, different topologies];
    Bini et al CQG(03)gq/02 [in gravitational wave collision];
    Barrabès & Hogan CQG(04)gq/03 [deflection];
    Chicone & Mashhoon CQG(05)gq/04 [in Fermi coordinates];
    Fukumoto et al PTP(06)gq [finite-size, fast-moving];
    in Franklin 10;
    Sardanashviky IJGMP(10) [in terms of jets of one-dimensional submanifolds];
    Arraut et al CEJP(11)-a1005 [static spherically-symmetric metrics];
    Corichi IJMPD(15)-a1207 [stationary black-hole background, energy];
    > s.a. kerr spacetimes; kerr-newman
      solutions; scattering.
  @ Interacting: Bergmann & Komar GRG(82);
    Tretyak & Nazarenko CondMP(00)ht;
    Damour et al PLB(01)gq [3PN];
    Lompay ht/05;
    Tarasov AP(10) [non-Hamiltonian, subject to a general force];
    Alesci & Arzano PLB(11)-a1108 [coupled to 3D Einstein gravity];
    Novello & Bittencourt GRG(13)-a1201 [accelerated motions as geodesics in dragged metrics].
  @ Geometric:  Balachandran et al JMP(84);
    Freidel et al PRD(07)
      [Dirac observables and effective non-commutative geometry];
    Chanda & Guha IJGMP(18)-a1706.
  @ Related topics: Gill et al IJTP(93),
    IJTP(98) [proper-time formulation];
    Parrott gq/02 [Rohrlich equation];
    Uggerhøj RMP(05) [in strong crystalline fields];
    Russo & Townsend JPA(09) [jerk, snap, and higher-order derivatives];
    Prosekin et al PRD(15)-a1506 [propagation, transition from ballistic to diffusion regime];
    > s.a. computational physics areas.
  > Other topics: see
    gravitomagnetism; mass;
    non-commutative physics;
    radiation; scalar field theories;
    specific heat; statistical-mechanical systems.
Variations and Generalizations > s.a. dissipative system;
  quantum particles [including superparticle]; spinning particles.
  $ Charged particles:
    The length-of-worldline action becomes
S[x] = ∫ ds [m0c |gab x·a x·b|1/2 + q Aa x·a] .
  * Modified Lagrangian:
    It can depend on the curvature of the worldline (rigidity) and its torsion;
    > s.a. higher-order lagrangians.
 @ Charged particles: Hyman AJP(97)mar,
    Muñoz AJP(97)may [with constant fields];
    Horwitz ht/98 [Lorentz force equation from Stückelberg mechanics];
    Aldaya et al JPA(02) [group cohomology];
    Carvalho et al IJMPA(04)gq [with defect distribution];
    Timoumi RPMP(04) [closed trajectories];
    Marmo & Tulczyjew RPMP(06) [Poincaré-covariant, and T reflection];
    Rohrlich 07;
    Chin JMP(09)-a0809 [constant field];
    Boozer JPA(08) [advanced effects];
    Arrayás & Trueba JPA(10) [in a knotted electromagnetic field];
    Kar & Rajeev AP(11)-a1010 [with magnetic moment, and radiation reaction];
    Gallo & Moreschi PRD(12)-a1112 [without explicitly divergent quantities];
    Torromé IJGMP-a1207 [pointlike];
    Franklin & LaMont BJP(14)-a1310
      [two oppositely charged particles in 1D, with retarded potentials and no radiation reaction];
    Azzurli & Lechner AJP(14)aug [massless];
    Nekouee et al a1711 [in deformed phase space, Lagrangian];
    Kiessling & Tahvildar-Zadeh IJMPD(19)-a1906-MG15;
    > s.a. electromagnetism; modified electromagnetism
      [non-linear]; self-force [including preacceleration].
  @ Charged particles, radiation:
    Lidsky TMP(05) [radiating];
    Franklin & Griffiths AJP(14)aug [particle in hyperbolic motion];
    Garfinkle a1901 [uniform acceleration].
  @ Charged particles, curved spacetime: Frolov & Shoom PRD(10) [near a weakly magnetized Schwarzschild black hole];
    Shiose et al PRD(14)-a1409 [around a weakly-magnetized rotating black hole];
    Noble & Jentschura PRA(16)-a1603 [in Reissner-Nordström spacetime].
  @ With torsion:
    Barros et al CQG(05) [and rigidity];
    Gaitan et al a0912-conf;
    > s.a. torsion in physics.
  @ In gravity's rainbow spacetime: Ling et al MPLA(07)gq/06;
    Garattini & Mandanici PRD(12)-a1109.
  @ In generalized backgrounds: 
    Johnson & Hu PRD(02)
      [modified Abraham-Lorentz-Dirac equation in a quantum field];
    Cabo-Bizet & Cabo Montes de Oca PLA(06) [stochastic medium];
    Punzi et al PRD(09)-a0901 [in area-metric manifolds, Finsler norm];
    Stern PLA(11) [on quantum spacetime];
    Calcagni PRD(13)-a1306 [multiscale spacetimes];
    > s.a. kaluza-klein phenomenology; non-commutative
      geometry [Snyder spacetime]; types of field theories [double field theory].
  @ Frenet-Serret formalism: Arreaga et al CQG(01)ht [Frenet-Serret curvature action];
    Bini et al CQG(06)-a1408 [for null world lines].
  @ Other generalizations: Pavón JMP(01)qp [stochastic dynamics];
    Sonego & Pin JMP(09)-a0812 [anisotropic];
    Markov et al JPG(10)-a1008 [with color charge];
    Lahiri & Lee a1011 [with non-Abelian charge];
    Tarakanov a1010-conf
      [internal degrees of freedom, potential depending on v and a];
    Arzano & Kowalski-Glikman CQG(11) [with de Sitter momentum space];
    Amelino-Camelia et al PRD(12)-a1206
      [in de Sitter spacetime, with deformed Lorentz symmetry and relative locality];
    Romero & Vergara MPLA(15)-a1501
      [Lifshitz field theories, Snyder non-commutative spacetime and momentum-dependent metric];
    Muñoz-Díaz &  Alonso-Blanco a1907 [composite systems, description];
    > s.a. classical systems [two particles].
Coupled to Gravity
  > s.a. 3D gravity; dynamics of gravitating
  particles; particle models [point particles]; spinning particles;
  test-body motion.
  @ Non-spinning: Kaniel & Itin gq/01;
    Blanchet & Faye JMP(01)gq/00  [regularization].
  @ Charged: Rosen AP(62) [field of particle in motion];
    Khriplovich & Pomeransky SHEP(99)gq/98-conf;
    Khriplovich ht/00-proc [spinning];
    Das et al mp/05 [review];
    Gorbatenko TMP(05)
      [Einstein-Infeld-Hoffmann, order (v/c)3].
  @ With torsion: Fiziev & Kleinert gq/96 [action];
    Kleinert & Pelster GRG(99)gq/96  [autoparallels];
    Barros e Sá gq/97;
    Geyer et al IJMPA(00)ht/99;
    Pezzaglia gq/99/IJTP;
    Arroyo et al GRG(04)ht/03;
    Barros et al IJMPA(04).
  > Related topics: see multipoles
    [extended objects]; orbits of gravitating bodies; quantum
    particles; radiation.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 oct 2019