|  Perfect Fluids | 
In General > s.a. gas.
  * Idea: A fluid with
    isotropic pressure, no viscosity and (in general relativity) no heat conduction;
    It is described by a four-velocity ua,
    number density ρ, energy density μ, pressure p,
    specific entropy s, temperature T, relativistic enthalpy h;
    Of the scalar quantities, only two are independent, to define the rest use the equation
    of state and the first law of thermodynamics; If μ = μ(ρ,
    s), then
h = ∂μ / ∂ρ = (μ + p)/ρ , T = (∂μ / ∂s) / ρ , and p = ρ h − μ .
* Stress-energy tensor: Of the form
Tab = (μ + p) ua ub + p gab ,
    derivable from the Lagrangian L = − μ, where the
    variations are subject to constraints; The field equations are stress-energy
    conservation, ∇a
    Tab = 0, together with either
    the continuity equation ∇a(ρ
    ua) = 0,
    or ua
    ∂a s = 0
    [@ Coll et al a1902, hydrodynamic approach].
  * 3+1 Equations: The conservation of stress-energy,
    ∇a Tab
    = 0, gives, projected parallel and perpendicular to ua,
    respectively,
∇a(μ ua) = − p ∇a ua and (μ + p) ua ∇a vb = − qab ∇a p
(conservation of mass-energy and momentum, respectively); The Newtonian limit of the second equation is the Euler equation.
Types, Couplings and Applications > s.a. relativistic cosmological
  models and matter.
  * Isentropic: One with
    an equation of state of the form p = p(μ)
    only; In this case, one can introduce the elastic potential (or internal
    energy) ε and the density ρ, with μ
    = ρ (1 + ε); For example, the ideal gas.
  @ Null dust: Kijowski et al PRD(90);
    Bičák & Kuchař PRD(97)gq [canonical general relativity].
  @ Other types: Quevedo & Sussman CQG(95)gq/94 [non-isentropic, thermodynamics];
    Jackiw et al JPA(04)hp [with internal symmetry and supersymmetry];
    Majd & Momeni IJMPE(11)-a0903 [p = −ρ, statistical derivation of density of states];
    Jacak & Steinberg PT(10)may [quarks and gluons in heavy-ion collisions];
    > s.a. Chaplygin Gas; Logotropic Fluid;
      Phantom Field.
  > In general relativity:
    see canonical general relativity with matter; relativistic
    cosmology and cosmological models, in particular FLRW
    spacetimes; 3-dimensional and numerical relativity;
    solutions, solutions with symmetries, spherically
    symmetric, and generation methods.
References
  @ General: Thorne in(67);
    Misner in(68);
    in Hawking & Ellis 73, 69ff;
    in Misner et al 73;
    Smarr et al in(80);
    Anile 89.
  @ Variational formulation:
    Schutz & Sorkin AP(77);
    Kopczyński AP(90);
    Dimitrov gq/99,
    gq/99;
    Elze et al JPG(99)hp;
    Marsden et al JGP(01) [general continuum mechanics];
    Ootsuka et al CQG(16)-a1605 [relativistic].
  @ Lagrangian, Hamiltonian: Bao et al CMP(85);
    Bombelli & Torrence CQG(90);
    Brown CQG(93),
    AP(96)gq/94;
    Langlois in(94);
    Peitz & Appl MNRAS(98)gq/97 [3+1];
    Morrison RMP(98);
    Antoniou & Pronko TMP(04)ht/01 [and Clebsch variables];
    Manoff in(01)gq/02,
    gq/03 [Lagrangian];
    Bhat mp/04 [compressible];
    Kolev DCDSA(07)-a0711 [Poisson brackets];
    Roberts a0910 [Clebsch potential approach];
    Faraoni PRD(09)-a0912 [inequivalence of Lagrangians with non-minimal gravity coupling];
    Minazzoli & Harko PRD(12)-a1209 [barotropic fluid, Lagrangian];
    Frisch & Villone EPJH(14)-a1402 [3D ideal incompressible flow, Cauchy's formulation];
    Wongjun PRD(17)-a1602 [Lagrangian];
    Minguzzi a1606 [action];
    Datta a1807 [and analog spacetime];
    Mendoza & Silva IJGMP-a2011.
  @ Covariant: Bruni & Sopuerta CQG(03)gq [long-wavelength].
  @ Numerical implementation: Papadopoulos & Font PRD(00)gq/99 [spherical];
    Baumgarte et al AIP(99)gq [relativistic, 3D].
  @ Relativistic:
    Schutz PRD(71) [Hamiltonian];
    Calzetta CQG(98)gq/97 [fluctuating];
    Walton ap/05 [symmetric hyperbolic Euler equations];
    Gourgoulhon EAS(06)gq-ln;
    Borshch & Zhdanov Sigma(07)-a0709-proc [exact non-stationary non-homogeneous flows];
    Banerjee et al EPJC(15)-a1409 [Hamiltonian, in equal-time and light-cone coordinate systems];
    > s.a. Geometrization.
  @ Quantization: Roberts MPAG(98)gq;
    Endlich et al JHEP(11)-a1011 [canonical];
    Gripaios & Sutherland PRL(15)-a1406 [as a low-energy, effective field theory].
  @ Related topics: Zloshchastiev APPB(99)gq/98 [models for Lorentzian geometry];
    Ghosh ht/01 [as gauge theory],
    ht/01 [conserved quantities];
    Verozub IJMPD(08)gq/07 [particles as moving along geodesics];
    Mannheim et al GRG(10) [on perfect fluids as general matter models].
  >  Related topics: see viscosity;
    Weyssenhoff Fluid [particles with intrinsic spin].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021