|  Spinning-Particle Models | 
Non-Relativistic, Classical Spinning Particles
  > s.a. classical particles / classical systems.
  @ References: Thomas Nat(26)apr;
    Bruce qp/01 [spin-1/2, Hamiltonian];
    Rivas JUMS-phy/01-in [generalized Lagrangian],
    JPA(03)phy/01 [spinning electron];
    Salesi IJMPA(05)qp/04 [and Zitterbewegung];
    Recami & Salesi FP(07)qp/05 [from arbitrary-order Lagrangians, and chronons];
    Banerjee & Mukherjee CQG-a2003 [canonical formulation].
Relativistic, Classical Spinning Particles
  > s.a. particle models / chaotic motion;
  dirac fields; Thomas Precession;
  twistors.
  * 1998: The motion of
    spinning particles in gravitational fields is still not well understood;
    Look for clarification in gravitomagnetism.
  * Mathisson-Papapetrou-Dixon equations:
    For a particle of velocity va, momentum
    pa, and spin tensor S ab,
    in the monopole-dipole approximation they are
dua/dτ = va , \(Dp^a/D\tau = {1\over2}\)Rabcd vb S cd , DS ab/Dτ = pa vb − pb va ;
    In general, va and pa are
    not parallel, and one must use an additional condition to fix pa,
    for example pb S ab = 0.
  @ Mathisson-Papapetrou-Dixon equations: 
    Mathisson ZP(31)
    + tr GRG(10),
    ZP(37) + tr GRG(10);
    Papapetrou PRS(51),
    PRS(51);
    Dixon PRS(70);
    Lompay gq/05;
    Singh GRG(08)-a0706 [perturbation method];
    Costa et al PRD(18)-a1712 [momentum-velocity relation];
    > s.a. gravitating matter;
      Wikipedia page.
  @ General references: Salesi & Recami AACA-ht/96;
    Lyakhovich et al NPB(99)ht/98 [any D, integer s];
    Niederle & Nikitin PRD(01) [half-integer spin];
    Machin ht/01 [1D, with supersymmetry];
    Rivas JPA(03)phy/01 [spinning electron];
    Salesi IJMPA(02);
    Rivas JPA(06)ht/05-conf [s = 1/2, symmetry group];
    Pol'shin MPLA(09) [variational principle];
    Kudryashova & Obukhov PLA(10) [explicitly covariant dynamics];
    Bratek JPCS(12)-a1111 [indeterminate worldlines];
    Kiriushcheva et al CJP(13)-a1305 [gauge symmetries];
    Kaparulin & Lyakhovich PRD(17)-a1708 [massive, flat spacetime world sheets];
    Plyatsko & Fenyk a1905 [in a gravitational field];
    Obukhov JPCS(20)-a1912 [in external fields, formalism].
  @ Lagrangian / Hamiltonian formulations:
    Muslih mp/00 [canonical];
    Bérard et al ht/03 [covariant H];
    Hajihashemi & Shirzad IJMPA(16)-a1501;
    Andrzejewski et al a2008 [coadjoint orbits method].
  @ Models: Rębilas AJP(11)oct [Bargmann-Michel-Telegdi theory];
    Deriglazov AP(12)-a1107 [classical Dirac particles without Grassmann variables],
    PLA(12)-a1203 [without observable trajectories];
    Rempel & Freidel PRD(17)-a1609 [bilocal model in terms of two entangled constituents],
    a1612 [in dual phase space];
    Kaparulin et al JPCS(19)-a1907 [massive, in 4D Minkowski space].
  @ 3D, in 2+1 dimensions:
    Ghosh PLB(94) [in 2+1 dimensions];
    Valverde & Pazetti JHEP(06)ht [massless, supersymmetric variant];
    Schuster & Toro PLB(15)-a1404 [massless, with non-trivial physical spin].
  @ In curved spacetime: Burman IJTP(77) [worldlines as geodesics of modified connection];
    Khriplovich & Pomeransky JETP(98)gq/97 [equations of motion];
    Erler gq/99-proc;
    Pezzaglia gq/99/IJTP-conf [and Clifford algebra];
    Turakulov & Safonova MPLA(03)gq/01 [vector];
    Chicone et al PLA(05)gq;
    Wu CTP(08)gq/06 [gravitomagnetism and non-geodesic motion];
    Blanchet CQG(07)gq/06 [dipolar particle];
    Cianfrani & Montani NCB(07)gq-proc;
    Khriplovich APPBS(08)-a0801;
    Mohseni IJTP(08)-a0710 [Lagrangian];
    Muminov a0802,
    a0805 [massless spin-1/2];
    Singh & Mobed PRD(09)-a0807,
    GRG(10)-a0903-GRF [Lorentz-invariance breaking and muon decay];
    Costa et al AIP(12)-a1206 [Mathisson's helical motions],
    PRD(16)-a1207 [gravito-electromagnetic analogies];
    Mashhoon & Obukhov PRD(13) [spin precession in inertial and gravitational fields];
    d'Ambrosi et al PRD(16)-a1511 [and charged, motion];
    Kumar a1512-MG14;
    Batista & Barbosa dos Santos a2004 [re conserved quantities];
    Marsot a2103-PhD.
  @ In curved spacetime, Hamiltonian:
    Barausse et al PRD(09)-a0907;
    d'Ambrosi et al PLB(15)-a1501;
    Kunst et al PRD(16)-a1506 [for different tetrad fields];
    Witzany et al CQG(19)-a1808.
  @ Infinite-spin: Edgren et al JHEP(05)ht,
    Edgren & Marnelius JHEP(06) [higher-order Lagrangian].
  @ Other special types and generalizations: Krishna et al IJMPA(13)-a1210 [1D supersymmetric, BRST formalism];
    Deguchi et al IJMPA(14)-a1309 [4D massless, twistor model, canonical];
    Buchbinder et al JHEP(18)-a1805 [with continuous spin].
  > Related topics:
    see diffusion; spin,
    2-spinors and 4-spinors;
    spinors in field theory; test-body motion
    / quantum particles.
Specific Spacetimes and Generalizations
  > s.a. particles in kerr, reissner-nordström
  and schwarzschild spacetimes.
  @ de Sitter spacetime: Obukhov & Puetzfeld PRD(11)-a1010,
    a1201-conf;
    Fröb & Verdaguer JCAP(17)-a1701 [quantum corrections].
  @ Schwarzschild-de Sitter spacetime:
    Ali IJTP(02);
    Mortazavimanesh & Mohseni GRG(09)-a0904;
    Plyatsko et al GRG(18)-a1811 [non-equatorial circular orbits].
  @ Other black holes: Stuchlik & Kovar CQG(06)gq [Kerr-de Sitter];
    Kubizňák & Cariglia PRL(12)-a1110 [higher-dimensional spinning, integrability];
    Witzany PRD(19)-a1903 [near black holes, Hamilton-Jacobi equation].
  @ Vaidya spacetime: Singh PRD(05);
    Singh PRD(08)-a0808 [perturbation approach].
  @ In other curved spacetimes: Garcia de Andrade gq/02 [Gödel spacetime];
    Mohseni PLA(02)gq,
    et al CQG(01)gq/03 [gravitational wave];
    Mohseni IJMPD(06)gq/05 [pp-wave and uniform B field];
    Bini et al IJMPD(06)gq [massless, in vacuum algebraically special spacetime];
    Obukhov et al PRD(09)-a0907 [in the field of a rotating source];
    Barbot & Meusburger GD-a1108 [stationary flat spacetimes];
    Zalaquett et al CQG(14)-a1308 [in conformally flat spacetimes];
    Toshmatov et al EPJC(20)-a2003 [non-asymptotically flat spacetimes];
    > s.a. orbits of gravitating objects [spin-orbit and spin-spin effects].
  @ With electromagnetic field: 
    Bargmann et al PRL(59) [precession];
    Künzle JMP(72) [and gravitational field];
    Cianfrani et al gq/06-MGXI,
    Cianfrani et al PLA(07) [from 5D Kaluza-Klein framework];
    Pozdeeva JSI(09)-a0708 [neutral massive spin-1/2 particle, interaction H];
    Barducci et al EPJC(10)-a1006 [with anomalous magnetic moment];
    Deriglazov PLA(12)-a1106 [and Zitterbewegung];
    Hushwater AJP(14)jan
    + a1410 [discovery of the classical equations of motion];
    Deriglazov & Guzmán AMP(17)-a1710 [in external gravitational and electromagnetic fields];
    Obukhov et al PRD(17)-a1708.
  @ With torsion: Wanas ASS(97)gq/99 [torsion correction to geodesic];
    Messios IJTP(07);
    Popławski PLB(10)-a0910 [classical Dirac particles cannot be pointlike],
    a1304
      [intrinsic spin requires gravity with torsion and curvature].
  @ In non-commutative geometry: Das & Ghosh PRD(09)-a0907 [Hamiltonian];
    Dvoeglazov AIP(09)-a0909;
    Adorno et al PRD(10)-a1008 [wave equation].
Classical Spinning Particles Coupled to Gravity
  > s.a. classical particles; motion of gravitating bodies.
  @ General references: Wald PRD(72);
    Kánnár GRG(94) [Lagrangian];
    Rietdijk TMP(94);
    Mashhoon APPS-a0801-conf;
    Cianfrani & Montani EPL(08)-a0810 [Papapetrou coupling from Dirac equation];
    Obukhov & Puetzfeld a1509-proc
      [conservation laws and covariant equations of motion, with minimal and non-minimal coupling];
    Fröb JHEP(16)-a1607 [quantum gravitational corrections];
    > s.a. tests of the equivalence principle.
  @ With electromagnetic fields: Lyakhovich et al IJMPA(00)ht [massive];
    Tucker PRS(04).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 apr 2021