|  Hamiltonian Systems | 
General Types
  > s.a. classical mechanics; hamiltonian dynamics
  / phase space; schrödinger
  equation; statistical mechanics.
  * Common forms: The
    classical ones are of the type H = T + V,
    with T = \(1\over2\)hij
    pi pj;
    > s.a. jacobi dynamics.
  * Degenerate: The rank
    of the symplectic structure is not constant throughout phase space;
    Phase space is divided into causally disconnected, non-overlapping
    regions in each of which the rank of the symplectic matrix is constant,
    and there are no classical orbits connecting two different regions.
  * Time-dependent:
    Cosymplectic structures play a central role in the theory.
  * Non-canonical: The
    equations of motion cannot be obtained from a variational principle,
    and are of the form
\(\partial u/\partial t = J(u)\) δ\(\cal H\)/δu .
  @ References: Rosquist & Pucacco JPA(95) [2D, geometric approach to invariants];
    Casetti et al RNC(99) [many degrees of freedom];
    Horwood et al CMP(05)mp/06 [orthogonally separable, classification];
    de Micheli & Zanelli JMP(12) [degenerate, quantum].
  @ Non-canonical:
    Vanneste & Shepherd PRS(99);
    Junginger et al a1409 [construction of Darboux coordinates];
    Yoshida & Morrison PS(16)-a1409 [hierarchy].
  @ Non-linear: Radak JMP(00) [moments of distributions];
    Choi & Nahm IJTP(07) [quadratic, t-dependent, and SU(1,1) Lie algebra].
  @ Non-local: Woodard PRA(00) [non-locality of finite extent];
    Bolonek & Kosiński qp/07 [and quantization];
    Gibbons et al JGP(10);
   De Sole & Kac a1210;
   > s.a. higher-order lagrangians.
  @ Higher-order:
    Govaerts & Rashid ht/94;
    Schmidt gq/95;
    Hamamoto ht/95;
    Miron 02-a1003;
    > s.a. higher-order lagrangians.
  @ Time-dependent: Sardanashvily JMP(98) [in terms of fiber bundles];
    Haas JPA(01)mp/02 [1D, invariants];
    de León & Sardón a1607 [geometric Hamilton-Jacobi theory];
    > s.a. lie algebras and groups.
  @ Discrete:
    Baez & Gilliams LMP(94);
    Rosenau PLA(03) [continuum approximations];
    Talasila et al JPA(04);
    Lall & West JPA(06);
    Das CJP(10)-a0811 [discretized field theories];
    Elze PRA(14)-a1312 [cellular automata];
    Káninský a2008 [linear dynamical systems];
    > s.a. lagrangian systems.
Specific Types of Systems > s.a. constrained
  systems; integrable systems; oscillator;
  parametrized theories; particle physics.
  * Coupled oscillators:
    The Hamiltonian is of the form
H = \(1\over2\)Gab Pa Pb + \(1\over2\)Vab qa qb .
  * Single particle: Configuration space = Physical space.
  * Lagrangians linear in
    velocities: Use the Faddeev-Jackiw, or symplectic, method.
  @ Quadratic Hamiltonians: Suslov PS(10) [integrals of motion].
  @ Other types: Capovilla et al JPA(02)n.SI [curves];
    Cariñena et al IJGMP(13) [Lie-Hamilton systems];
    Ghosh a2104 [with balanced loss and gain];
    > s.a. Continuous Media; projective geometry.
Field Theories > s.a. canonical general relativity;
  dirac fields; higher-order gravity;
  klein-gordon fields; membranes;
  yang-mills theory.
  * With boundaries:
    For each degree of freedom, each piece of boundary gives its conjugate
    momentum, even a timelike one or a corner!
  * Lorentz invariance:
    There is no simple way to check whether a given Hamiltonian field theory
    is relativistic or not, and one normally has to either solve for the
    equations of motion or calculate the Poisson brackets of the Noether charges.
  @ General references: Giachetta et al 97;
    Hájíček & Kijowski PRD(98)gq/97 [with discontinuities];
    de León et al mp/02;
    Gershgorin et al JMP(09)-a0807 [waves in weakly inhomogeneous media];
    Danilenko TMP(13)-a1302 [modified formalism];
    Kajuri MPLA(16)-a1606 [and Lorentz invariance];
    Vines et al PRD(16)-a1601 [extended, spinning test body in curved spacetime];
    Campoleoni et al JHEP(16)-a1608 [massless higher-spin fields].
  @ Gravity: Arnowitt et al in(62),
    DeWitt PR(67) [general relativity];
    Gomes & Shyam JMP(16)-a1608 [uniqueness result for general relativity]. 
  @ Quantum field theories:
    Rinehart a1505 [foundations];
    Teufel & Tumulka a1505 [without ultraviolet divergences].
  @ Electrodynamics: Bogolubov & Prykarpatsky UJP-a0909 [and Lagrangian, quantization];
    Heninger & Morrison a1808 [with magnetic monopoles];
    Vollick a2101
      [in terms of electric and magnetic fields, without potentials].
  @ With boundary values: Soloviev JMP(93)ht,
    NPPS(96)ht,
    PRD(97)ht/96,
    ht/99,
    JMP(02),
    JMP(02);
    Bering JMP(00)ht/98;
    Zabzine JHEP(00)ht;
    Barbero et al CQG(14)-a1306 [geometric approach];
    Troessaert a1506 [gauge theories];
    > s.a. quasilocal general relativity.
  @ Variations:
    Hélein & Kouneiher mp/00,
    JMP(02) [pataplectic form];
    Echeverría-Enríquez et al IJMMS(02)mp/01 [geometrical, multivectors].
References > s.a. Contact Manifolds.
  @ Perturbations: Abdullaev JPA(99) [Poincaré sections, method];
    Fish mp/05 [3D, dissipative].
  @ Without Lagrangian: Rubio & Woodard CQG(94)gq/93,
    CQG(94)
      [from equations of motion and Poisson brackets];
    Hojman ht/94,
    JPA(96) [including field theories];
    Gomberoff & Hojman JPA(97);
    Herrera & Hojman mp/00.
  @ Covariant: Zhao et al NCB(03);
    van Holten PRD(07) [charged particles in external fields];
    Struckmeier & Redelbach IJMPE(08)-a0811 [field theory].
  @ With complex parameters: Bender et al JPA(06)mp [complex H, trajectories];
    Nanayakkara & Mathanaranjan Pra(14)-a1406 [complex H and time].
  @ Non-conservative systems: Bravetti & Tapias JPA(15)-a1412;
    Galley PRL(13)-a1210;
     > s.a. classical systems
       and variational principles.
  @ Non-reversible systems: Figotin & Schenker JSP(07) [dissipative, dispersive];
    Eberard et al RPMP(07) [thermodynamics, on contact manifolds];
    Buliga a1902 [dissipative version, and information];
    > s.a. dissipative systems.
  @ With fractional derivatives: Muslih & Baleanu CzJP(05)mp [Riewe's formulation];
    Tarasov JPA(05)m.CS/06;
    Baleanu et al JMP(06) [1+1 higher-derivative theories];
    Rabei et al JMAA(07);
    Malinowska & Torres FCAA(12)-a1206 [and quantization].
  @ Quantum-gravity motivated theories: Colladay PLB(17)-a1706 [lorentz-violating theories, extended Hamiltonian formalism];
    Bosso PRD(18)-a1804 [theories with minimal length];
    Singh & Carroll a1806
      [finite-dimensional generalization, based on generalized Clifford algebra];
    > s.a. non-commutative field theories.
  @ Other generalizations: Seke et al PLA(97) [effective Hamiltonians];
    Kozlov JMP(01) [semidiscrete, conservation laws];
    Morando & Tarallo mp/02 [quaternionic];
    Su & Qin CTP(04)mp/03 [Birkhoffian generalization];
    Hegseth qp/05 [for quantum mechanics];
    Bliokh mp/05 [for Minkowski spacetime];
    Tulczyjew mp/06 [with discontinuities];
    Tarasov & Zaslavsky CNSNS(08)mp/07 [systems with long-range interaction and memory];
    Lázaro-Camí & Ortega RPMP(08) [stochastic];
    Ushakov IJTP(11)-a1004 [non-symplectic generalization];
    Bender et al a1509 [for any linear constant-coefficient evolution equation];
    > s.a. Nambu Brackets.
  @ Related topics:
    Cabral & Gallas PRL(87) [duality];
    Kandrup PRD(94)
      [Hred for subsystem].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 may 2021