|  Canonical Formulation of General Relativity | 
In General > s.a. constraints; initial-value
  formulation; symmetries in physical theories.
  * Idea: Recast the Einstein equation
    in a form that uses classical states as evolving points on a phase space; The equations
    themselves are equivalent to those in the initial-value formulation, but the symplectic
    structure of phase space allows us to study the constraint and symmetry algebra, and to
    set up the quantum theory.
  * Issues: The absence of a preferred time, or
    multi-fingered nature of time (> see time in gravitation).
  * With a spatial boundary: The constraint
    algebra may acquire a central extension.
  @ Introductions and reviews: Bojowald 11;
    Giulini a1505-in.
  @ General: Dirac PRS(58);
    Teitelboim PLB(75) [gauge choices];
    Fischer & Marsden GRG(76);
    Christodoulou et al GRG(79);
    Ó Murchadha gq/03 [from first principles];
    Lusanna IJGMP(07)gq/06-ln [kinematical basis];
    Kiriushcheva & Kuzmin CEJP(11)-a0809 [myths and realities];
    Shestakova in(09)-a0911 [unsolved problems];
    Fayzullaev IJMPA(10)-a1004;
    Richter & Plyatsko JPCS(11)-a1303 [hyperbolicity of Hamiltonian formulations];
    Montesinos et al a1912
      [from Palatini action, with no second-class constraints];
    Frolov a2001 [natural form of Hamiltonian].
  @ Different versions: Franke TMP(06)-a0710;
    Frolov et al G&C(11)-a0809;
    Cianfrani et al PLB(12)-a1104 [relationship between ΓΓ and ADM formulations].
Special Systems and Related Concepts > s.a. observables;
  specific types of metrics; time in quantum gravity.
  @ Asymptotically flat spacetimes: Marolf CQG(96)gq/95;
    Bartnik gq/04/CAG [Hilbert manifold structure];
    Campiglia CQG(15)-a1412 [falloff conditions and consequences];
    Corichi & Reyes CQG(15)-a1505 [consistent formulation from Holst action with surface terms].
  @ Spatially bounded spacetimes:
    in Brown & York PRD(93);
    in Lau CQG(96)gq/95 [boundary momenta];
    Soloviev TMP(97)gq/98;
    Carlip CQG(99)gq [Killing horizon];
    Czuchry et al PRD(04)gq [null boundary, and thermodynamics];
    Chen et al a1307 [choice of reference metric];
    Sun et al proc(17)-a1604 [covariant boundary terms, and quasilocal quantities];
    > s.a. hamiltonian systems; quasilocal formulation.
  @ Diffeomorphisms:
    Isham & Kuchař AP(85);
    Kuchař FP(86);
    Kuchař & Torre PRD(91) [harmonic gauge];
    Stone & Kuchař CQG(92);
    Antonsen & Markopoulou gq/97;
    Luo et al PLB(98)gq/97;
    Kouletsis gq/98;
    Salisbury et al NPPS(00)gq [Ashtekar variables];
    Samuel CQG(00)gq;
    Bimonte et al IJMPA(03)ht [Peierls brackets];
    Pons CQG(03)gq [spacetime];
    Salisbury MPLA(03)gq-proc [and symmetries];
    Savvidou CQG(04)gq/03,
    CQG(04)gq/03;
    Lusanna  & Pauri GRG(06)gq/04,
    GRG(06)gq/04;
    Kiriushcheva et al PLA(08)-a0808;
    Kiriushcheva et al IJTP(12)-a1107 ["non-canonicity puzzle" and Lagrangian symmetries of the action];
    Salisbury et al IJMPA(16)-a1608 [restoration of 4D diffeomorphism covariance];
    > s.a. embeddings [hyperspace]; gauge theories.
  @ And time: Ashtekar & Horowitz JMP(84) [canonical choice];
    Kouletis PRD(08)-a0803 [generally covariant form];
    Christodoulou et al IJMPD(12)-a1206-GRF [negative lapse];
    Thébault SHPMP(12) [interpretation, on three denials of time];
    Pitts SHPMP(14)-a1406 [change is real and local].
  @ Reduction to true degrees of freedom: Kijowski et al PRD(90) [with perfect fluid];
    Fischer & Moncrief GRG(96).
  @ In extended phase space: Shestakova CQG(11)-a1102,
    comment Kiriushcheva et al a1107 [and canonical transformations];
    Shestakova JPCS(12)-a1111;
    > s.a. models in canonical gravity.
  @ Related topics: Baskaran et al AP(03) [boosts and center of mass];
    Wang gq/06 [conformal decomposition];
    Anderson a0711 [and relationalism].
  > Related theories: see higher-order
    theories; hamiltonian systems; linearized general relativity;
    modified theories; teleparallel gravity.
Geometrodynamics
  > s.a. ADM formulation [including variations]; spacetime [relational].
  @ General references: Kuchař JMP(74) [ADM super-Lagrangian for vacuum and scalar field coupling];
    Komar IJTP(78).
  @ Dynamics as geodesic flow: Misner in(72);
    Biesiada & Rugh gq/94;
    Greensite CQG(96)gq/95;
    Carlini & Greensite PRD(97)gq/96 [and "worldline'' quantization of gravity];
    > s.a. chaos in general relativity.
Triad and Tetrad Variables
  @ Triads / tetrads: Castellani et al PRD(82);
    Charap & Nelson CQG(86),
    CQG(87),
    et al CQG(88);
    Goldberg PRD(88);
    Henneaux et al PRD(89) [and Ashtekar variables];
    Kamimura & Fukuyama PRD(90);
    Seriu & Kodama PTP(90);
    van Elst & Uggla CQG(97)gq/96 [threading and slicing];
    Bañados & Contreras CQG(98)gq/97;
    Clayton JMP(98)gq/97 [diffeomorphisms],
    JMP(99)gq/98 [matter];
    Lusanna & Russo gq/98,
    gq/98;
    Contreras & Zanelli CQG(99)ht;
    Lusanna & Russo GRG(02)gq/01;
    Randono CQG(08)-a0805 [covariant];
    Kober CQG(11)-a1107 [non-commuting components of the tetrad field];
    Barbero et al a2011 [concise symplectic formulation].
  @ Constraint algebra: Henneaux PRD(83);
    Charap & Nelson JPA(83);
    Hadjer Lagraa et al CQG-a1606 [polynomial constraints obeying a closed algebra].
  @ Other topics: Begtsson IJMPA(90) [P and T];
    Lusanna NPPS(00)gq/99 [Dirac observables];
    Pons et al GRG(00)gq/99 [gauge group];
    Lagraa & Lagraa GRG(18)-a1706 [with fermions].
Other Approaches > see lattice gravity [canonical simplicial gravity]; modified formulations [different variables or splittings, null infinity, covariant formulations including coupling to matter].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 nov 2020