|  Quasilocal Formulation of General Relativity | 
Dynamics and Canonical Formulation > s.a. action;
  canonical general relativity [including boundary terms].
  @ General references: Szabados CQG(09)-a0902 [framework, and gauge invariance of boundary terms].
  @ Energy-momentum: Lau CQG(93)gq [symplectic];
    Husain & Major NPB(97)gq [bounded regions];
    Kijowski GRG(97);
    Major CQG(00) [quantum];
    Chen & Nester G&C(00)gq;
    Booth & Fairhurst CQG(03)gq [Hamiltonian];
    Szabados CQG(06)gq/05 [boundary conditions];
    Lau IJMPD(07) [generalized Chen-Nester expressions];
    McGrath et al CQG(12)-a1206 [the need for quasilocal conservation laws];
    Oltean et al a2006-GRF [boundary densities];
    > s.a. quasilocal energy.
  @ Covariant symplectic form: Chen et al PLA(95)gq/94;
    Chen & Nester CQG(99)gq/98;
    Anco & Tung JMP(02),
    JMP(02).
  @ From variation of action:
    Brown & York PRD(93);
    Booth & Mann PRD(99)gq/98 [non-orthogonal boundary];
    Brown et al PRD(99)gq/98 [small spheres],
    AP(02)gq/00;
    Booth PhD-gq/00 [canonical].
  @ 2+2 formulation:
    Epp gq/95 [double null];
    Grant & Moss PRD(97)gq;
    Yoon CQG(99)gq/00 [spherical symmetry],
    PLA(01)gq/00 [conservation laws],
    PRD(04) [no symmetry];
    Yoon a1306
      [physical time and Hamiltonian reduction];
    Yoon CQG(14) [Hamiltonian structure and constraint algebra];
    Oh et al a1607 [finding exact solutions].
  @ Black holes:
    Frolov & Martinez gq/94,
    CQG(96)gq/94;
    Booth CQG(01)gq [isolated horizons];
    Krishnan ch(14)-a1303 [quasi-local horizons].
  > Related topics:
    see angular momentum; conservation
    laws; higher-order theories.
Specific Types of Spacetimes
  @ Black holes: Bose & Naing PRD(99)ht [rotating];
    Dehghani & Mann PRD(01)ht [Kerr and Kerr-AdS spacetimes, thermodynamics];
    Lundgren et al PRD(07)gq/06 [inside a horizon].
  @ Axisymmetric: Martinez PRD(94)gq [Kerr];
    Zaslavskii CQG(95).
References > s.a. approaches to quantum gravity;
  gravitational thermodynamics; laws of black-hole
  thermodynamics; null infinity.
  @ General references, reviews: Lau PhD(94);
    Chang et al gq/99-proc;
    Szabados LRR(04),
    LRR(09);
    Anco JMP(07)gq/04.
  @ Relationships:
    Horowitz & Tod CMP(82);
    Bose & Dadhich PRD(99)gq;
    Fatibene et al JMP(01)gq/00.
  @ Ashtekar / spinorial variables:
    Mason & Frauendiener pr(89);
    Lau CQG(95)gq/94,
    CQG(96)gq/95.
  @ With matter: Ikumi & Shiromizu GRG(99)gq/97;
    Booth & Mann PRD(99)gq,
    AIP(99)gq [electromagnetism + dilaton];
    > s.a. gravitating matter.
  @ Related topics: Szabados CQG(94) [and 2D connections];
    Bose & Lohiya PRD(99)gq/98 [conformal transformations];
    Garattini IJMPA(99)gq/98,
    ht/98-proc [quantum corrections];
    Brown et al PRD(97)gq/96 [null limit];
    Szabados CQG(08) [tetrad approach, global topological obstructions].
Localization and Local Densities
  > s.a. gravitational energy; stress-energy pseudotensors.
  @ General references: Xulu PhD(02)-ht/03.
  @ Small sphere limit of quasilocal: Brown et al PRD(99)gq/98.
  @ Localization:
    Jezierski & Kijowski GRG(90);
    Nester CQG(91);
    Yoon gq/94;
    Maluf JMP(95)gq.
  @ Densities:
    Brown & York PRD(93);
    Lau CQG(96)gq/95.
  @ Special spacetimes: Dereli & Tucker CQG(04)ht [plane waves].
  @ In teleparallel equivalent: Maluf JMP(96)gq [de Sitter space];
    Maluf et al JMP(96)gq [rotating black holes].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 jun 2020