|  Systems in Classical Mechanics | 
In General, Space of Theories
  > s.a. formalism [dynamical systems]; physical systems;
  states; symmetries; symplectic
  structures.
  * Construction of theories: Use symmetries and invariances.
  @ New theories from old:
    Khorrami & Aghamohammadi NCB(98)ht/96.
  @ Stability of an equilibrium point: Birtea & Puta JMP(07) [equivalence of methods].
  @ Stability of a solution: González & Hernández a0705 [inequivalence with geodesic deviation for Jacobi metric];
    Punzi & Wohlfarth PRE(09)-a0810 [geometric];
    > s.a. chaos.
  @ Related topics: Truesdell 84 [continuum mechanics];
    Boccaletti & Pucacco 96, 99 [orbits];
    Zhou et al mp/02 [volume-preserving].
Non-Linear Systems
  > s.a. chaos; ergodic and Mixing
  Systems; integrable systems; KAM Theorem.
  * Types: They include
    unstable systems, which in turn include chaotic ones.
  @ General references:
    Hilborn & Tufillaro AJP(97)sep [RL];
    Rudolph & Hwa PhyA(04) [approach].
  @ Texts: Kaplan & Glass 95 [II, bio-oriented];
    Solari et al 96; Lam 98 [IIb];
    Scheck 10;
    Stetz 16 [including numerical].
  @ Non-integrable: Vernov mp/03-proc [solutions using Painlevé analysis].
  @ Related topics:
    Kahn & Zarmi AJP(00)oct [method of normal forms];
    Pelster et al PRE(03)mp/02 [periods of periodic orbits];
    Awrejcewicz & Lamarque 03 [non-smooth systems];
    Carpintero MNRAS(08)-a0805 [correlation dimension of an orbit]:
    Landa & McClintock PRP(13) [systems with fast and slow motions];
    > s.a. Amplitude Death;
      Attractor; Topological
      Entropy; Topological Transitivity.
Few-Body Systems > s.a. classical
  particle models; motion of gravitating bodies.
  * Two-body problem: It can be
    reduced to a one-body problem around the center of mass, with reduced mass
μ:= m1m2 / (m1+m2) .
  @ Two-body problem:
    Shchepetilov & Stepanova mp/05 [on constant-curvature spaces];
    Droz-Vincent IJTP(11)-a1006 [two relativistic particles].
  @ Three-body problem: Nauenberg PLA(01) [inverse-power-law forces, periodic orbits];
    Jiménez-Lara & Piña JMP(03) [r−2 potential];
    Calogero et al JMP(03) [solvable];
    Valtonen & Karttunen 06;
    Yamada & Asada PRD(11)-a1011 [relativistic, collinear solutions];
    Musielak & Quarles RPP(14)-a1508 [rev, historical and modern developments];
    Krishnaswami & Senapati Res-a1901 [intro];
    Gevorkian a2008 [on a conformally flat manifold, irreversibility];
    > s.a. newtonian orbits [including celestial mechanics];
      dynamics of gravitating bodies;
      Three-Body Physics.
Many-Body Systems > s.a. composite quantum systems;
  correlations; Emergent Systems;
  stochastic processes; thermodynamics.
  * Idea: It studies the emergence of new phenomena
    from interactions of many "elementary" objects, modeling the dynamics as stochastic
    and/or using statistical methods.
  @ General references: Pines 61;
    Mattis ed-93 [exactly-solvable models];
    Antoni et al cm/99-proc
      [infinite-range attractive interactions, and phase transitions];
    Lipparini 08;
    Diacu et al JNS(12)
    + JNS(12)-a0808 [on constant-curvature spaces];
    Kamenev 11 [non-equilibrium field-theoretical methods];
    Vicsek & Zafeiris PRP(12) [collective motion];
    Kuzemsky IJMPB(15)-a1507 [variational inequalities approach];
    Rrapaj & Roggero a2005 [RBM neural networks];
    Miller et al JGP-a2004 [generally covariant framework].
  @ Relativistic: Louis-Martinez PLA(03)ht [solutions].
  > Examples: see computational physics;
    gas; gravitating matter.
Examples > s.a. classical particle models;
  cosmological models; Gyroscope;
  Pendulum; Projectile Motion.
  * Billiard: If the walls
    move in time, the bounce law states that the angle of incidence is not
    equal to the angle of reflection; A billiard is known to be chaotic if
    the floor is flat and any obstacle or portion of wall is convex, or if
    the space has negative curvature (Hadamard 1898); In general, so is motion
    in a closed environment (compact configuration space), like a damped pendulum
    with an external periodic force, for some parameter values; > s.a.
    causality violation; spectral geometry.
  @ Billiard: Liboff PLA(01) [wedge billiard];
    Chernov JSP(06) [Sinai billiard, statistical];
    Rapoport et al CMP(07) [as approximation to Hamiltonian flow];
    Wojtkowski CMP(07) [hyperbolic];
    Ivashchuk & Melnikov G&C(09) [and cosmological models];
    Chernov & Markarian 06 [chaotic].
  @ Conservative systems: Finn et al a1806 [as geodesic motion in curved manifolds].
  @ Central potentials: Poole et al AJP(05)jan;
    > s.a. Bertrand's Theorem; Runge-Lenz Vector.
  @ Other examples: Perelomov CMP(81)mp/01,
    TMP(02)mp/01 [Kovalevskaya top];
    Abalmassov & Maljutin phy/04 [falling pen];
    Tuleja et al AJP(07)mar [Feynman's wobbling plate];
    Cherubini et al a0706/ARMA [bouncing ball with dissipation];
    Lucarini JSP(12)
      [dynamical system with a stochastic perturbation];
    Avanesov & Manko JRLR-a1304
      [linear potential, Hilbert-space formalism and tomographic probability distribution];
    MacKay & Salour AJP(15)jan-a1406 [simple exotic examples];
    Simonella & Spohn BAMS-a1501 [review of book on Hard Spheres and Short-range Potentials].
Other Types of Systems
  > s.a. constrained, hamiltonian,
  lagrangian systems; physical systems;
  quantum systems.
  @ Exactly solvable: Calogero JMP(04);
    Bruschi & Calogero JMP(06);
    > s.a. chaotic systems.
  @ Quasi-exactly solvable: Brihaye et al JMP(95);
    Avinash & Bhabani PLA(98) [and orthogonal polynomials];
    Bender & Boettcher JPA(98) [quartic family].
  @ Metrizable system: Sharipov TMP(95);
    > s.a. jacobi metric.
  @ Non-conservative:
    Dreisigmeyer & Young JPA(03),
    JPA(04) [and fractional derivatives];
    Bucataru & Miron RPMP(07) [and non-linear connections];
    Delphenich AdP(09)-a0812 [variational formulation];
    Galley PRL(13)-a1210 [Lagrangian and Hamiltonian dynamics];
    > s.a. dissipative systems; hamiltonian systems;
      quantum systems; variational principles.
  @ With supersymmetry: Suen et al PLA(00);
    Heumann JPA(02)ht [Coulomb problem].
  @ Classical time crystals: Shapere & Wilczek PRL(12)-a1202
    + Zakrzewski Phy(12)
      ["time crystals", with motion in their lowest-energy state];
    Yao et al a1801
      [periodically driven Hamiltonian dynamics coupled to finite-temperature baths];
    > s.a. crystals [quantum time crystals].
  @ Other generalized types: Bender et al JPA(08) [with complex energy, quantum-like behavior];
    > s.a. Discrete Models; Open
      Systems; p-Adic Systems;
      Pseudoclassical Systems.
  > Related topics: see  Ermakov
    and Hill System; Extended Objects;
    oscillator; Rigid Body; Rotor;
    turbulence.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 10 nov 2020