|  Classical Mechanics | 
In General > s.a. history
  of physics; state.
  * Idea: The class of
    physical theories in which the system has a well-defined history, with
    dynamics described by (differential or functional) equations of motion
    on a configuration space C (infinite-dimensional in field
    theory); The logical structure is that of a Boolean lattice.
  * History: Since the 1970s,
    when it was realized that chaos arises even with few degrees of freedom
    in non-linear systems, the perspective in the field has changed.
  * Subjects of interest: Various
    general aspects of non-linear dynamical systems, like chaos and turbulence.
  * Important recent applications:
    Galaxy formation; Saturn ring structure.
Related Topics
  > Approaches: see formulations [including
    dynamical systems]; hamiltonian dynamics; lagrangian dynamics.
  > Concepts: see Degrees of Freedom;
    energy; entropy; force;
    inertia; information; statistical
    mechanics; time; Trajectory.
  > Systems: see
    classical systems; field theory.
  > Phenomena: see
    chaos; Friction.
  > Results: see Bertrand's Theorem;
    noether theorem; Work-Energy Theorem.
Variations and  Generalizations > s.a. hilbert space;
  higher-order lagrangians; MOND.
  * Standard ones:
    Special and general relativistic dynamics; Quantum dynamics.
  * And quantum theory:
    Quantum corrections, if taken into account, introduce modifications
    to classical dynamics.
  * Barbour-Bertotti:
    Classical, without the ideal elements of inertial frames and external time
    (> see parametrized theories).
  * Super classical quantum mechanics:
    A proposed theory which is equivalent to the Heisenberg, Schrödinger, and
    Dirac non-relativistic quantum mechanics, with the addition of Born's probabilistic
    interpretation of the wave function built in from the start.
  @ Relationship with special and general relativity:
    Havas RMP(64);
    NCB 102(88)495 [Newton's third law].
  @ Relationship with  quantum mechanics:
    Savickas AJP(02)aug [and general relativity];
    Valentini PLA(04)qp/03 [non-quantum systems];
    Bojowald et al PRD(12)-a1208 [higher time derivatives in effective dynamics];
    Kurihara et al JTAP(14)-a1312 [classical mechanics as an equilibrium state of statistical mechanics];
    Dittrich & Reuter 20.
  @ Quantum corrections:
    Bouda & Djama PLA(01) [second law];
    Ward MPLA(02);
    Vachaspati PRD(17)-a1704 [coherent state coupled to a quantum bath].
  @ Post-Newtonian: Chicone gq/01-conf
      [equations of motion are functional differential equations].
  @ Nambu mechanics:
    Lassig & Joshi LMP(97) [constrained systems];
    > s.a. poisson structure.
  @ Supermechanics, anticommuting degrees of freedom:
    Cariñena & Figueroa JPA(97) [Hamiltonian and Lagrangian];
    Bruce et al JGM(17)-a1606 [geometric].
  @ Other examples: Salesi IJMPA(02)qp/01 [spinning particles].
  @ Stochastic: Guerra PRP(81);
    Streater RPMP(93) [and Markov chains];
    Zambrini a1212
      [path-integral inspired stochastic deformation of Lagrangian and Hamiltonian approaches];
    > s.a. stochastic processes.
  @ Other generalizations: Lamb AJP(01)apr [super-classical quantum mechanics];
    Kisil JPA(04)qp/02,
    Brodlie & Kisil in(03)qp,
    Brodlie JMP(04) [p-mechanics];
    Khrennikov & Nilsson 04 [p-adic; r BAMS(06)];
    Kisil RPMP(05) [p-mechanics and field theory];
    Lämmerzahl & Rademaker PRD(12)-a0904 [higher-order equations of motion];
    García-Morales CNSNS(16)-a1507 [semipredictable];
    Chashchina IJMPD(20)-a1902 [Planck-scale modification];
    > s.a. conformal invariance.
References > s.a. BRST transformations;
  parametrized systems [including relationalism];
  spacetime; topological field theories.
  @ Resources: issue AJP(00)apr [reviews].
  @ Texts: Hertz re-56 [classic];
    Mercier 59;
    Bergmann 62 [I];
    Pars 65;
    Aharoni 72;
    Desloge 82;
    Raychaudhuri 83;
    Griffiths 85;
    Fowles 86;
    Kibble 86;
    Reichert 90;
    Matzner & Shepley 91;
    Marsden 92;
    Barger & Olsson 95;
    Marion & Thornton 95;
    Hestenes 99;
    Teodorescu 07,
    08,
    09 [comprehensive];
    Helliwell & Sahakian 21.
  @ Texts, II: Chow 95;
    Kibble & Berkshire 04;
    Taylor 05;
    Morin 08;
    Verma 09;
    Johnson 10;
    Kleppner & Kolenkow 10 [II advanced];
    Chaichian et al 12;
    Chow 13;
    Rajeev 13;
    Englert 15;
    Iro 15;
    Nolte 15 [geometry, non-linear dynamics, complex systems, networks, relativity;
      r PT(15)];
    Bettini 16;
    Nolting 16;
    Ilisie 20.
  @ Texts, III: Synge & Griffith 59;
    Saletan & Cromer 71;
    Sudarshan & Mukunda 75;
    Abraham & Marsden 78;
    Goldstein 80;
    Gallavotti 83;
    Woodhouse 87;
    Arnold 89;
    Calkin 96 [Lagrangian and Hamiltonian];
    Thirring 97;
    Hand & Finch 98;
    Corinaldesi 99;
    Greiner 02;
    Fasano & Marmi 06;
    DiBenedetto 10;
    Shapiro & de Berredo-Peixoto 13;
    Lemos 18;
    Leinaas 19.
  @ Geometrical emphasis: Marmo et al 85;
    Giachetta et al 10;
    Holm 11;
    Lessig a1206 [primer].
  @ (Non-)integrability, chaos: Katok & Hasselblatt 95;
    McCauley 97;
    Scheck 10.
  @ Problems and solutions: 
    Tonti 77 [method];
    Lim 94;
    de Lange & Pierrus 10.
  @ Other emphasis: Lanczos 49 [variational methods];
    Rasband 83,
    Abraham & Ratiu 94 [symmetries];
    José & Saletan 98;
    Johns 05 [relativity and quantum mechanics];
    Müller-Kirsten 08 [relativity];
    Thorne & Blandford 15 [applications];
    Sussman & Wisdom 15 [conceptual-computational];
    Hentschke 17
      [numerical, theory of elasticity, engineering applications];
    > s.a. computational physics.
  @ Foundations: Hesse AJP(64)dec [philosophical];
    Desloge AJP(89)aug;
    Gallavotti in(06)mp/05;
    Darrigol SHPMP(07) [necessary nature];
    Preston SHPSA(08) [Mach and Hertz];
    Sklar 13;
    Hartmann a1307-PhD;
    Alonso-Blanco & Muñoz-Díaz a1404,
    a1411;
    Lubashevsky a1603 [from "microlevel reducibility"].
  > Online resources:
    Internet Encyclopedia of Science pages.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 jan 2021