|  Oscillators and Vibrations | 
In General
  > s.a. hamiltonian systems; Perturbation Methods;
  quantum oscillators; resonance.
  * Excitation: Can
    be direct (small drive gives small response), or parametric.
  * Modification –
    Mathieu equation: A harmonic oscillator with a small oscillating
    correction to m; It has a parametric resonance which may
    lead to chaotic instability (like a child on a swing).
  @ References: Pippard 89;
    Dattoli & Torre NCB(95) [phase space, coherent states];
    Roelofs AJP(01)aug [book reviews];
    Kim & Noz qp/04-conf [harmonic oscillators in different theories];
    Jenkins PRP(13)-a1109 [self-oscillation];
    Fitzpatrick 13;
    Balachandran & Magrab 18;
    Franklin 20;
    Bistafa a2104 [history, Krafft].
Classical Harmonic Oscillator
  * Lagrangian: L
    = \(1\over2\)m (x·)2
    − \(1\over2\)m ω2
    x2, with ω a parameter
    (= (k/m)1/2 for a spring).
  * Symplectic structure: Phase space
    Γ = {(q, p)}; Symplectic 2-form Ω = dp
    ∧ dq = r dφ ∧ dr.
  * Hamiltonian: For a single
    oscillator, and for n coupled oscillators, respectively,
H = p2/2m + \(1\over2\)mω2q2 = \(1\over2\)r2 , H = \(1\over2\)Gab pa pb + \(1\over2\)Vab qaqb ;
    The Hamiltonian vector field is XH
    = −∂/∂φ.
  @ Symmetries: Lutzky JPA(78) [and conservation laws];
    Cariñena et al JPA(02)ht [rational, non-symplectic].
  @ Other topics: Hojman JMP(93) [small oscillations];
    Degasperis & Ruijsenaars AP(01) [equivalent Hamiltonians].
Other Types of Oscillator > s.a. Dirac Oscillator;
  Helmholtz Resonator; non-commutative;
  Pendulum; semiclassical quantum mechanics [coupled to quantum].
    * Pais-Uhlenbeck fourth-order oscillator:
    It has equation of motion
d4q/dt4 + (ω12 + ω22) (d2q/dt2) + ω12 ω22 q = 0 .
  @ Anharmonic / non-linear / perturbed:
    Gottlieb & Sprott PLA(01) [driven, chaotic];
    Amore & Aranda PLA(03) [method];
    Amore & Fernández EJP(05)mp/04 [period];
    Cariñena et al mp/05-proc [superintegrable, position-dependent mass];
    Pereira et al PLA(07) [chaotic, phase and period];
    Bervillier JPA(09)a0812 [conformal mappings and other methods];
    Fernández a0910;
    He PLA(10) [Hamiltonian approach];
    Quesne EPJP(17)-a1607 [quartic and sextic];
    Turbiner & del Valle a2011 [quartic, solution].
  @ Relativistic: Beckers & Ndimubandi PS(96) [quantum];
    Li et al JMP(05)hp;
    Kim & Noz JOB(05)qp [coupled];
    Solon & Esguerra PLA(08)-a0806 [even polynomial potentials, periods];
    Nagiyev et al NCB(09)-a0902 [2D];
    Kowalski & Rembieliński PRA(10)-a1002 [massless];
    Babusci et al a1209;
    Ivanov & Pavlovsky a1411 [Path Integral Monte-Carlo approach].
  @ Different configuration spaces: Cariñena et al JMP(08)-a0709 [constant curvature, Cayley-Klein approach];
    Quesne PLA(15)-a1411 [on the sphere and the hyperbolic plane].
  @ Other generalized: Finkelstein & Villasante PRD(86) [anticommuting/Grassmann];
    Meißner & Steinborn PRA(97)
      [anharmonic, iterative Ens];
    Finkelstein IJMPA(98),
    Ellinas PS(99)*,
    add PS(00) [deformed];
    Frydryszak RPMP(08)-a0708 [nilpotent].
  @ Time-dependent: Colegrave et al PLA(88) [complex invariants];
    Kim & Page PRA(01) [action-phase variables].
  @ Damped:
    Maamache & Choutri JPA(00);
    Chee et al JPA(04)mp/02,
    JPA(04)mp/02 [N oscillators, phase space structure];
    Chandrasekar et al JMP(07) [Lagrangian and Hamiltonian description];
    Kumar et al PRE(09)-a0903 [dissipative, coupled to a bath];
    Luo & Guo a0906
      [infinite-dimensional Hamiltonian formalism].
Related Concepts
  > s.a. Detectors [accelerated]; Separatrix.
  * Quality factor Q:
    A measure of an oscillator's coupling to other systems, defined by Q:=
    f0/Δf, where Δf
    is the frequency width at half magnitude; It gives the decay time for an
    oscillation of frequency ω as τ = Q/ω.
  @ Coupled oscillators: Denardo et al AJP(99)mar [parametric instability];
    > s.a. Relaxation.
  > Thermodynamics:
    see non-equilibrium thermodynamics
    [perturbed]; non-extensive statistics;
    statistical mechanical
    and thermodynamical systems.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 apr 2021