|  Dirac Fields in Curved Spacetime | 
In General > s.a. quantum dirac fields; spinors;
  neutrinos; types of field theories [alternatives to Dirac theory].
  * Result: There are no static
    or time-periodic solutions on a Reissner-Nordström background.
  * Coupling: The spin current
    of the Dirac field couples to torsion or (as in general relativity) to the
    tetrad anholonomy.
  * Operator and eigenvalues:
    The fact that most of the geometric information of a compact riemannian
    spin manifold M is encoded in its Dirac operator D has
    become one of the building blocks of non-commutative geometry;
    > s.a. spectral and
    non-commutative geometry.
  @ General references: Rudiger PRS(81)
      [and WKB derivation of spinning particle equation of motion];
    Sen JMP(81) [for neutrinos];
    in Birrell & Davies 84;
    Bigazzi & Lusanna IJMPA(99)ht/98 [spacelike hypersurfaces];
    Cardoso CQG(06) [two-component, wave equation];
    Nyambuya EJTP(07)-a0709 [and anomalous magnetic moment],
    a0711/EJTP,
    FP(08) [new proposed forms];
    Cartoaje a1006 [coordinate-free notation];
    Alhaidari & Jellal PLA(15)-a1106 [without spin connections or vierbeins];
    Obukhov et al PRD(13)-a1308,
    comment Arminjon a1312;
    Gies & Lippoldt PRD(14) [with local spin-base invariance];
    Collas & Klein a1809-ln;
    Struckmeier et al a1812 [effective mass term].
  @ History:
    Scholz phy/04-proc [Fock & Dirac 1929];
    Kay GRG(20)-a1906 [on Schrödinger's 1932 paper].
  @ Hamiltonian: Leclerc CQG(06)gq/05 [Hamiltonian in non-stationary spacetime];
    Huang & Parker PRD(09)-a0811 [Hermiticity, time-dependent metric].
  @ Hamiltonian, non-uniqueness problem:
    Arminjon & Reifler AdP(11)-a0905,
    JPCS(10)-a1001;
    Arminjon AdP(11)-a1107,
    IJGMP(13)-a1205 [solution of the non-uniqueness problem];
    Gorbatenko & Neznamov a1301 [no problem];
    Arminjon IJTP(13)-a1302 [spin-rotation coupling],
    JPCS(15)-a1502.
  @ Operator and eigenvalues: Trautman APPB(95)ht/98 [non-orientable surface];
    Landi & Rovelli PRL(97)gq/96;
    Esposito 98-ht/97 [spectral geometry];
    Adam et al PRD(99)ht,
    PLB(00)ht/99 [3D, + abelian gauge theory, zero modes];
    Agricola & Friedrich JGP(99);
    Kraus JGP(00) [on Sn];
    Ammann & Bär JGP(00) [and curvature];
    Cnops 02 [intro];
    Ammann JGP(04)
      [T2 with non-trivial spin structure];
    Jung et al JGP(04) [on a Riemannian foliation];
    Avramidi IJGMP(05)mp [including matrix geometry];
    Alexandrov JGP(07) [locally reducible Riemannian manifolds];
    Goette CMP(07) [compact symmetric space];
    Dąbrowski & Dossena CQG(13)-a1209 [and diffeomorphisms];
    Asorey et al IJGMP(15)-a1510 [topology and geometry of self-adjoint and elliptic boundary  conditions];
    > s.a. observables.
  @ With boundaries: Hijazi et al CMP(01)m.DG/00,
    CMP(02);
    Govindarajan & Tibrewala PRD(15)-a1506 [edge states];
    Große & Murro a1806 [globally hyperbolic manifolds with timelike boundary].
  @ Related topics:
    Cotăescu & Visinescu in(07)ht/04 [symmetries and supersymmetries];
    Reifler & Morris IJTP(05)-a0706 [Hestenes' tetrad and spin connections];
    Arminjon in(07)-a0706 [alternative form, from quantum mechanics];
    Arminjon & Reifler IJGMP(12)-a1012 [four-vector vs four-scalar representations],
    BJP(13)-a1103 [generalized de Broglie relations],
    JGSP-a1109-talk
      [classical-quantum correspondence and wave-packet solutions];
    Cariglia a1209-proc [hidden symmetries];
    Vassiliev MG14(17)-a1512 [non-geometric representation].
On a Black Hole Background > s.a. black-hole
  uniqueness; schwarzschild-de sitter spacetime.
  @ General references:
    Radford & Klotz JPA(79),
      JPA(79);
    Cohen & Powers CMP(82);
    Goncharov PLB(99)gq [twisted, Schwarzschild and Reissner-Nordström];
    Mukhopadhyay gq/01-MG9
      [Schwarzschild, Kerr, Reissner-Nordström spacetimes];
    Doran & Lasenby PRD(02)gq/01 [scattering, perturbative].
  @ Schwarzschild spacetime: Jin CQG(98)gq/00 [scattering theory];
    Mukhopadhyay & Chakrabarti CQG(99)gq;
    Carlson et al PRL(03)gq
      [numerical Tab];
    Jing PRD(04)gq [late-time];
    Doran et al PRD(05)gq [particle absorption];
    Cáceres & Doran PRA(05) [energy spectrum];
    Cho & Lin CQG(05),
    Dolan et al PRD(06) [massive, scattering];
    Cotăescu MPLA(07)gq [approximate solution];
    Smoller & Xie AHP(12)-a1104 [massless Dirac fields].
  @ Reissner-Nordström: Finster et al JMP(00)gq/98;
    Belgiorno PRD(98) [massive];
    Melnyk CQG(00) [charged];
    Mukhopadhyay CQG(00)gq;
    Jing PRD(05)gq/04 [late-time].
  @ Kerr spacetime:
    Unruh PRL(73);
    Mukhopadhyay IJP(99)gq;
    Mashhoon CQG(00)gq [spin couplings];
    Chakrabarti & Mukhopadhyay MNRAS(00)ap,
    NCB(00);
    Mukhopadhyay & Chakrabarti NPB(00)gq;
    Batic JMP(07)gq/06 [scattering];
    Dolan & Dempsey CQG(15)-a1504 [bound states];
    Röken a1507
      [separability in advanced Eddington-Finkelstein-type coordinates].
  @ Kerr-Newman:
    Page PRD(76);
    Finster et al CPAM(00)gq/99,
    CMP(02);
    He & Jing NPB(06)gq [charged, massive, late-time];
    Dariescu et al a2102.
  @ Other black hole background: Lyu & Gui IJTP(07) [Schwarzschild-de Sitter, semi-analytical];
    Belgiorno & Cacciatori JMP(10)-a0803 [Kerr-Newman-AdS],
    JPA(09)-a0807 [Kerr-Newman-de Sitter],
    PRD(09)-a0810 [charged de Sitter black holes];
    Lyu & Ciu PS(09) [Reissner-Nordström-de Sitter];
    Sánchez et al PLB(11)-a1110 [massive neutrinos in a SdS black hole];
    Cebeci & Özdemir CQG(13)-a1212 [Kerr-Taub-NUT spacetime];
    Farooqui a1508 [Kerr, spin precession].
Other Backgrounds > s.a. kantowski-sachs models;
  graphs; huygens' principle.
  @ Constant curvature: Cotăescu MPLA(98)gq,
    Takook gq/00-proc [de Sitter space];
    Friedrich JGP(00);
    Alimohammadi & Vakili AP(04)gq/03;
    López-Ortega GRG(04) [3D de Sitter];
    McMahon et al gq/06 [Rindler space];
    Cotăescu RJP(07)gq [de Sitter and AdS];
    Crucean MPLA(07)-a0704 [de Sitter];
    Bachelot CMP(08)-a0706 [AdS, well-posedness];
    Kanno et al JHEP(17)-a1612 [de Sitter space];
    Santos & Barros IJGMP(19)-a1704 [Rindler space].
  @ Cosmological, FLRW models: Villalba & Isasi JMP(02)gq;
    Sharif ChJP(02)gq/04;
    Zecca IJTP(06);
    Finster & Reintjes CQG(09)-a0901 [spatially closed];
    Dhungel & Khanal ChJP(13)-a1109;
    Yagdjian AP(20)-a2006 [fundamental solutions];
    > s.a. FLRW spacetime.
  @ Other background:
    Cotăescu & Visinescu IJMPA(01) [Taub-NUT];
    Groves et al PRD(02)gq
      [static spherical, \(\langle\)Tab\(\rangle\)];
    Cariglia CQG(04)ht/03 [with Yano tensors];
    Talebaoui GRG(05) [plane wave];
    Fernandes et al gq/07 [vacuumless defects];
    Al-Badawi & Sakalli JMP(08)
      [rotating Bertotti-Robinson spacetime];
    López-Ortega LAJPE(09)-a0906 [spherically symmetric];
    Faba & Sabín PRD(19)-a1901 [exotic spacetimes];
    > s.a. deformed uncertainty relations [in graphene].
  @ With non-trivial topology: 
    Gózdz PRD(10);
    Jackiw PS(12)-a1104-talk [zero-energy modes];
    Cuenin a1311 [on the half-line].
  @ With torsion: Zecca IJTP(02);
    Adak et al IJMPD(03);
    Formiga & Romero IJGMP(13)-a1210 [and non-metricity];
    > s.a. Immirzi Parameter.
Coupled to Gravity > s.a. canonical general
  relativity; spinning particles [derivation of coupling].
  @ General references:
    Brill & Wheeler RMP(57);
    Dirac in(62);
    Brill & Cohen JMP(66);
    Finster et al PRD(99)gq/98 [particle-like];
    Saaty mp/01;
    Aldrovandi et al gq/04-fs;
    Arminjon FP(08)gq/07 [two alternatives];
    Chafin a1403
      [Dirac matrices as dynamical fields];
    Singh a1705
      [Compton-Schwarzschild length and modified Einstein-Cartan-Dirac equations];
    > s.a. bianchi models.
  @ Einstein-Dirac-(Maxwell) theory:
    Finster et al PLA(99)gq/98 [particle-like],
    CMP(99)gq/98,
    MAA(01)gq/99 [no-black-hole result],
    MPLA(99)gq [soliton-like];
    Zecca IJTP(03) [with torsion];
    Ranganathan gq/03 [Kerr-Newman-like];
    Mei PLB(11)-a1102 [solution representing a massive fermion].
  @ Einstein-Dirac-Yang-Mills theory: Finster et al MMJ(00)gq/99,
    Bernard CQG(06) [no-black hole result].
  @ Other theories: Adak CQG(12)-a1107
      [in the Poincaré gauge theory of gravity with torsion and curvature];
    Sert & Adak GRG(13) [topologically massive gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 feb 2021