|  Higher-Order Theories of Gravity | 
In General
  > s.a. gravity theories; phenomenology [and solutions,
  weak-field limit]; types of higher-order gravity theories [including actions, Hamiltonians].
  * Idea: Theories of gravitation,
    first discussed by H Weyl in 1918 as alternatives to Einstein's theory,
    that include quadratic or higher-order curvature terms in the action, e.g.,
    R2, Rab
    Rab and Rabcd
    Rabcd (only
    two of these are independent – the integral of a combination
    of them gives the Euler number χ(M)).
  * Motivation: One
    can alleviate the divergences in the quantum theory, and modify
    the predicted cosmological expansion history.
  * Action / Lagrangian:
    In 4D, the most general one with up to quadratic terms is
S = − ∫ (α Rab Rab − β R2 + γ R) dv ;
    any other term can be absorbed into these using the Gauss-Bonnet theorem
    [true only in positive-definite case?]; The only one which gives second-order
    equations in d > 4 is the Lanczos Lagrangian; But S
    could have a different curvature dependence.
  * Field equations:
    [@ Stelle PRD(77)]
Hab:= (α − 2β) R;ab− α Rab;c;c − (\(1\over2\)α − 2β) gab \(\square\) R + 2α Rmn Rambn +
− 2β R Rab − \(1\over2\)gab (α Rmn Rmn − βR2) + γ Rab − \(1\over2\)γ gab R = −\(1\over2\)Tab ,
    where Hab satisfies
    H ab;b
    = 0 identically, as a consequence of the field equations.
  @ Reviews:
    in Fradkin & Tseytlin PRP(85);
    Cotsakis gq/97-MG8 [status];
    Nojiri & Odintsov IJGMP(07)ht/06-ln [and dark energy];
    Farhoudi GRG(06) [and trace anomaly relation];
    Capozziello & Francaviglia GRG(08)-a0706 [and phenomenology];
    Schmidt IJGMP(07)gq/06-ln [4th-order, history and applications];
    Sotiriou PhD(07)-a0710;
    Sotiriou & Faraoni RMP(10)-a0805;
    Fabbri PhD-a0806;
    Faraoni a0810-conf [successes and challenges];
    Capozziello et al OAJ(10)-a0909;
    De Felice & Tsujikawa LRR(10)-a1002;
    Bueno et al PRD(17)-a1610 [linearization].
  @ With matter: Páramos a1111-proc [on non-minimal couplings to curvature];
    Feng & Lü EPJC(16)-a1512 [non-minimally coupled Maxwell field].
  @ Approaches, general references:
    Stelle GRG(78);
    Brans CQG(88) [and metric redefinitions];
    Essén IJTP(90);
    Cuzinatto et al EPJC(15)gq/06 [gauge formulation];
    Jaime PRD(11)-a1006 [f(R) gravity with R as extra degree of freedom];
    Hamad IJMPD(14)-a1408 [entropy-functional formalism];
    Belenchia et al RPP(18)-a1612 [degrees of freedom];
    Deser GRG(17)-a1705 [bootstrapping from linear theories].
Metric vs Palatini Formulation
  * Idea: In general relativity,
    the metric (second-order) and the Palatini (first-order) formulations are dynamically
    equivalent, at least classically; This equivalence does not hold for theories of gravity
    with a non-linear dependence on the curvature, and the set of solutions of the Palatini
    equations is a non-trivial subset of the solutions of the metric equations; One set of
    exceptions are the Lovelock gravity theories.
  * Hybrid theories: Theories in which
    an f(R) term constructed à la Palatini is added to the metric
    Einstein-Hilbert Lagrangian.
  @ General references:
    Olmo & Komp gq/04;
    Deser CQG(06)gq,
    comment Kiriushcheva & Kuzmin CQG(07)gq/06 [obstacles with odd-derivative terms];
    Sotiriou PLB(07) [instability in metric formulation];
    Exirifard & Sheikh-Jabbari PLB(08)-a0705 [equivalence of formulations only for Lovelock gravity];
    Popławski IJMPA(08)-a0706;
    Iglesias et al PRD(07)-a0708 [how (not) to Palatini];
    Borunda et al JCAP(08)-a0804;
    Faraoni PLB(08)-a0806 [Palatini is unphysical];
    Bastero-Gil et al AIP(09)-a0901;
    Capozziello et al MPLA(11)-a1006 [equivalence by divergence-free current];
    Vitagliano et al PRD(10)-a1007 [f(R) vs other forms of the action];
    Capozziello et al MPLA(10)-a1009 [and Jordan frame vs Einstein frame].
  @  Hybrid theories: Capozziello et al JCAP(13)-a1212,
    IJMPD(13)-a1305-GRF;
    Tamanini & Böhmer PRD(13);
    Böhmer et al PRD(13)-a1305 [stability of the Einstein static Universe];
    Capozziello et al Univ(15)-a1508 [rev].
  @ Special types of theories: Shahid-Saless PRD(87) [R + R2 theory];
    Ezawa et al gq/03,
    NCB(04)gq [f(R) theories];
    Amendola et al PRD(11)-a1010
      [f(R) theories, unified framework with larger class of theories];
    Olmo IJMPD(11)-a1101,
    a1112-proc
      [f(R) theories, Palatini approach].
Relationship with General Relativity and Scalar-Tensor Theories
  * Relationship with scalar-tensor gravity:
    If we have a theory with Lagrangian
\(\cal L\) = |g|1/2 F(g, Ric(g)) + \(\cal L\)m(g, ∂g, φ, ∇gφ) ,
a redefinition of the metric (which need no longer be Lorentzian) gives a scalar-tensor theory with action
\(\cal L\) = |h|1/2 R(h) + \(\cal L\)m + \(\cal L\)+(h, ∂h, φ,∇hφ) , where hab:= |det(δ\(\cal L\)/δRab)|−1/2 (δ\(\cal L\)/δRab) ;
    A theory with an independent connection with torsion and/or non-metricity but not
    coupled to matter is equivalent to ω0
    = −3/2 Brans-Dicke theory.
  @ And general relativity, scalar-tensor: Goenner in(87);
    Magnano et al GRG(87);
    Jakubiec & Kijowski PRD(88),
    JMP(89);
    Magnano & Sokołowski PRD(94)gq/93; 
    Magnano gq/95-conf;
    Sokołowski gq/95-GR14;
    Núñez & Solganik ht/04;
    Flanagan CQG(04)gq [equivalence];
    Sotiriou CQG(06)gq;
    Bertolami & Páramos CQG(08)-a0805 [and non-trivial matter coupling];
    Bisabr PS(09)-a0808;
    Sotiriou CQG(09)-a0904 [with non-metricity and torsion, equivalence to Brans-Dicke theory];
    Rodrigues et al PRD(11)-a1103 [auxiliary-field representation for modified gravity models];
    Castañeda & Velásquez JPComm(20)-a1808 [and cosmological perturbations];
    > s.a. f(R) theories.
Special Topics and  Results
  > s.a. higher-order lagrangian theories; massive gravity.
  * Bicknell theorem: A
    conformal relationship between 4th-order gravity and scalar-tensor theory;
    > s.a. scalar-tensor gravity.
  @ Energy:
    Boulware et al PRL(83);
    Deser & Yang CQG(89);
    Borowiec et al GRG(94);
    Deser & Tekin PRL(02)ht,
    PRD(03)ht/02,
    PRD(07)gq;
    Fatibene et al IJGMP(06) [same solution, different theories];
    Multamäki et al CQG(08)-a0712 [energy-momentum complexes];
    Baykal PRD(12)-a1212 [quadratic theories];
    > s.a. gravitational energy.
  @ Noether symmetries: Sanyal et al GRG(05)ap/03;
    Modak et al GRG(05);
    Capozziello et al EPJC(12)-a1206 [in Hamiltonian dynamics, rev].
  @ Cauchy / initial-value problem, f(R) gravity:
    Teyssandier & Tourrenc JMP(83) [R + R2];
    Capozziello & Vignolo IJGMP(12)-a1103;
    Tsokaros CQG(14) [for f(R) gravity];
    Sáez-Chillón a2103 [3+1 decomposition];
    > s.a. initial-value formulation [characteristic formulation].
  @ Cauchy / initial-value problem, other:
    Jakubiec & Kijowski JMP(89) [well-posedness];
    Lanahan-Tremblay & Faraoni CQG(07)-a0709,
    comment Capozziello & Vignolo CQG(09)-a0903,
    reply CQG(09)-a0906 [well-posed for metric version];
    Capozziello & Vignolo IJGMP(09)-a0901,
    CQG(09) [with perfect fluid];
    Paschalidis et al CQG(11)-a1103 [preservation of constraints];
    Cayuso et al PRD(17)-a1706;
    Morales & Santillán JCAP(19)-a1811 [Stelle quadratic gravity].
  @ Other related topics:
    Eliezer NPB(89) [Regge calculus];
    Ghoroku pr(90) [lqg-type variables];
    Bartoli et al CQG(99)gq/98 [gauge fixing];
    Woodard LNP(07)ap/06 [choice of theory];
    Carloni & Dunsby JPA(07)gq/06-conf [dynamical systems approach];
    Padmanabhan PRD(11)-a1109;
    Kim et al PRL(13)-a1306
      [quasilocal conserved charges];
    Mistry et al EPJC(20)-a2001 [spectral action approach];
    > s.a. hamilton-jacobi theory; higher-order
      theories of quantum gravity; metric matching.
  > Related results: see
    Israel's Theorem; Lichnerowicz Theorem;
    types of higher-order theories [Ostrogradski theorem].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 3 apr 2021