|  2-Dimensional Classical Gravity | 
In General > s.a. 2D manifolds;
  2D quantum gravity; types of field theories.
  * Remark: Any metric solves
    the vacuum Einstein equation, so to get something interesting one has to
    modify the theory slightly; General matterless models of gravity include
    theories with a dilaton, arbitrary powers in curvature, or dynamical torsion;
    They are a special class of "Poisson-sigma-models" whose solutions
    are known completely, together with their general global structure; Besides
    the ordinary black hole, arbitrary singularity structures can be studied.
  * Solvability: All 2D models
    of gravity – including theories with non-vanishing torsion and dilaton
    theories – can be solved exactly if matter interactions are absent;
    An absolutely conserved quantity determines the global classification of
    all solutions; In the case of spherically reduced general relativity it
    coincides with the mass in the Schwarzschild solution.
  @ Overview: in Brown 88;
    Gegenberg et al PRD(88);
    Mohammedi pr(90);
    Kummer gq/96;
    Strobl Hab(99)ht/00.
  @ Canonical form: Kummer & Lau AP(97)gq/96 [boundary conditions, quasilocal energy];
    Constantinidis et al PRD(00)ht/99 [gauge fixing and reduced phase space];
    Kiriushcheva et al MPLA(05)ht,
    MPLA(05)ht,
    Kiriushcheva & Kuzmin MPLA(06),
    AP(06)ht/05 [canonical form of Einstein-Hilbert action];
    Gambini et al CQG(10)-a0909,
    comment Bojowald et al CQG(17)-a1706 [Ashtekar-type variables];
    Gegenberg & Kunstatter a1504 [as modified Yang-Mills theory];
    McKeon CJP(17)-a1607 [Palatini action, symplectic analysis].
  @ Einstein-Hilbert theory: da Rocha & Rodrigues MPLA(06)ht/05,
    comment Kiriushcheva & Kuzmin ht/06 [Lagrangian];
    de Lacroix & Erbin GRG(20)-a1612 [with non-conformal matter, degrees of freedom].
  @ AdS-cft, boundary field theory: Cadoni et al PRD(01)ht/00;
    Cadoni & Carta MPLA(01)ht/01-in [dilaton].
  @ Solutions:
    Cooperstock & Faraoni GRG(95) [gravitational radiation];
    Klösch & Strobl gq/97-MG8 [classification];
    > s.a. 2D black holes; geons [kinks].
  @ And matter: Ohta & Mann CQG(96)gq [with point particles, canonical reduction];
    Ambjørn et al MPLA(97) [Ising matter];
    Mann CQG(01)
      [N particles, on S1];
    Boozer PRD(10) [point particles].
  @ Related topics: Deser FP(96)gq/95 [inequivalence of Palatini and metric forms];
    Kummer & Tieber PRD(99)ht/98 [symmetries and conservation laws];
    Boozer EJP(08) [toy model];
    Bertin et al AP(10)-a0911 [general relativity, Hamilton-Jacobi constraint analysis];
    > s.a. black-hole entropy [corrections]; entropy bounds.
Dilaton Theories
  > s.a. dilaton; black holes; cosmic
  censorship; semiclassical general relativity [limits of validity].
  * Remark: One version can
    be obtained from the spherical reduction of 4D general relativity.
  @ General references:
    Klösch et al HPA(96)gq;
    Klösch NPPS(97)gq;
    Grumiller et al AP(01)gq/00 [2 dilatons];
    Alves & Bezerra IJMPD(00)gq [+ scalar];
    Cavaglià AIP(98)ht,
    PRD(99)ht/98,
    Grumiller et al MPLA(01)gq/00 [matterless],
    PRP(02) [rev, especially black holes];
    Mignemi PLB(03)ht/02 [with torsion].
  @ With particles: Rivelles NPPS(00)ht/99.
  @ Related topics: Hayward CQG(93)gq/92 [censorship];
    Cruz & Navarro-Salas MPLA(97) [free field theory equivalence];
    Grumiller et al UJP(03)ht-in [triviality of κ-deformations];
    Grumiller & Jackiw PLB(06) [duality].
Jackiw-Teitelboim Theory > s.a. 2D quantum gravity;
  3D gravity [extension]; black holes.
  * Field equations: Simply R = T.
  @ General references: Teitelboim PLB(83),
    in(84);
    Jackiw in(84),
    NPB(85);
    Henneaux PRL(85);
    Torre PRD(89);
    Sikkema & Mann CQG(91);
    Moayedi & Darabi JMP(01)gq/00 [with electromagnetism];
    Cadoni & Mignemi GRG(02)gq  [cosmology];
    Constantinidis et al CQG(08)-a0802 [canonical analysis];
    Alkalaev JPA(14) [higher-spin extension];
    Moitra et al a2101 [second-order formalism].
  @ As a BF theory: Cabrera a2001 [Faddeev-Jackiw and canonical analysis];
    Wieland a2003
      [twistor representation for the boundary charges].
  @ With cosmological constant: Brigante et al JHEP(02)ht;
    Maldacena et al a1904.
  @ Other solutions: Mann & Ohta CQG(00)gq/01 [2-body];
    Reyes JPA(06) [solitons].
Other Theories
  > s.a. emergent gravity [entropic]; Liouville
  Theory; Matrix Models; supergravity;
  topological field theories.
  @ Topological gravity:
    Rajeev PLB(82) [quantum, solution];
    Li PRD(86),
    NPB(90) [W-gravity];
    Labastida & Pernici PLB(88) [Lagrangian];
    Labastida et al NPB(88);
    Chamseddine & Wyler PLB(89),
    NPB(90);
    Witten NPB(90).
  @ Topological gravity with matter:
    Killingback PLB(91),
    PLB(91).
  @ Higher-derivative: Schmidt JMP(91);
    Schmidt GRG(99) [and Einstein-dilaton];
    Ahmed a1112 [f(R) theories];
    > s.a. black holes.
  @ Quadratic with torsion: Grosse et al JMP(92)ht;
    Katanaev et al PRD(96)gq/95 [relation to dilaton];
    Mignemi AP(97)gq/95 [Riemann-Cartan].
  @ Supergravity: Ertl et al NPB(98)ht/97.
  @ Discrete, Lorentzian triangulations:
    Di Francesco et al NPB(00) [and random walks],
    NPB(01)ht/00 [and Calogero Hamiltonian];
  @ Non-commutative: Cacciatori et al CQG(02)ht;
    Balachandran et al CQG(06)ht [in terms of non-commutative gauge theories].
  @ More theories:
    Schaller & Strobl ht/93 [with torsion];
    Amelino-Camelia et al PRD(96)ht [string-inspired, and Yang-Mills theory];
    Obukhov PRD(04)gq/03 [metric-affine];
    Frolov et al GRG(10)-a0901 [algebraic analysis];
    Klusoň PRD(12)-a1110 [massive gravity, Hamiltonian analysis].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu &ndash modified 19 may 2021