|  Brans-Dicke Theory of Gravity | 
In General
  > s.a. gravitational constant; scalar-tensor
  theories; types of higher-order theories [equivalence].
  * Idea: A scalar-tensor
    theory of gravity containing an arbitrary "Dicke coupling constant"
    ω and, in the generalized form, a mass m; It amounts to
    effectively introducing a dynamics for the gravitational coupling G.
  * In the Jordan frame:
    The action, if K (K0) is
    the trace of the extrinsic curvature induced by g (η)
    on ∂M and including a cosmological constant, is
SJ[g, Φ, ...] = \(1\over16\pi\) ∫M dv [Φ (R − 2Λ) − ω gab Φ−1 ∇aΦ ∇bΦ] + 2 ∫∂M (ΦK− Φ0K0) ds + Smatter ;
The field equations, in units in which G = 1, are
\(\square\)Φ = (\(8\pi\over3\)+ 2ω) T , Gab = (8π Φ−1)Tab + (ωΦ−2) (Φ,aΦ,b − \(1\over2\)gab Φ,mΦ,m) + Φ−1 (Φ;ab − gab \(\square\)Φ) .
* In the Einstein frame: The action is
SE[g, Φ, ...] = \(1\over16\pi\) ∫M dv [R − (ω + 3/2) Φ,a Φ,a] + ∫M dv exp{−2Φ}\(\cal L\)m ;
The field equations are
Gab = 8π (Φ,aΦ,b − \(1\over2\)gab gmn Φ,m Φ,n) .
  * History: Perfectly viable in
    1971, it was neglected for some years, then revived since the 1980s because
    it (with other matter fields) arises in Kaluza-Klein theories, and as an
    effective theory in the low-energy limit of string theory; 2016, There is still
    interest in the  theory, despite the fact that Solar System tests impose strong
    constraints on it, rendering it indistinguishable from general relativity.
  @ General references:
    Brans & Dicke PR(61);
    Dicke PR(62);
    in Dicke 64;
    Jackiw NC(68);
    Miyazaki gq/00/PRD [and general relativity];
    Jackiw & Pi a1511-fs [reasons for current interest];
    Fabris et al a1603-fs [new perspectives];
    Brando et al IJMPD(19)-a1810 [and general relativity].
  @ Summaries: in Misner et al 73, 1070ff;
    Will in(79).
  @ Jordan vs Einstein frame:
    Bhadra et al MPLA(07);
    Artymowski et al PRD(13)-a1309 [in quantization à la lqc];
    Gionti PRD-a2003 [canonical analysis].
  @ Related topics: Chernodub & Niemi PRD(08)-a0709 [and electroweak theory];
    Faraoni CQG(09)-a0906 [mass and range of scalar field];
    Lobo IJGMP(18)-a1610 [non-metricity];
    > s.a. brans-dicke phenomenology [including solutions and cosmology];
      gravitational thermodynamics; spherical general relativity.
  > Online resources:
    see Wikipedia page.
Variations and Generalizations
  > s.a. 3D gravity; quantum cosmology [third quantization];
  quantum cosmology models; quintessence.
  @ ω → ∞ limit:
    Banerjee & Sen PRD(97);
    Faraoni PLA(98)gq,
    PRD(99)gq;
    Quirós gq/99/PLA;
    Bhadra & Nandi PRD(01)gq/04 [scalar field];
    Chauvineau CQG(03).
  @ ω → 0 limit: Punzi et al PLB(08)-a0804 [geometrical structure].
  @ Massive: Alsing et al PRD(12)-a1112 [radiation from compact binaries].
  @ 3-dimensional: Alonso et al PRD(03);
    do Prado et al a1012 [and cosmological acceleration].
  @ Quantum theory: Cho CQG(97) [and equivalence principle];
    Zhu et al MPLA(98) [quantum cosmology and cosmological constant];
    Pimentel & Mora PLA(01)gq/00 [3rd quantization];
    Ohkuwa NCB(03) [WKB time];
    Pal PRD(16)-a1608 [canonical quantization, FRW model, phase transition];
    Frion & Almeida PRD(19)-a1810 [affine quantisation];
    > s.a. renormalization of quantum gravity.
  @ Lqg / lqc quantization:
    Zhang & Ma JPCS(12);
    Zhang at al PRD(13)-a1211,
    Jin et al JCAP(19)-a1808;
    Song et al a2004 [alternative Hamiltonian constraint]
  @ Generalizations, extensions:
    Chakraborty & Ghosh PS(03);
    Catena PRD(07)ht/06 [minimal supersymmetric extension];
    Amendola et al PRD(08)-a0801 [with Gauss-Bonnet term, and Solar System tests];
    Smolyakov IJMPA(10)-a0907 [non-linear, Born-Infeld-like];
    Qiang et al PLB(09) [5D, and cosmology];
    Ponce de León CQG(10)-a0912,
    JCAP(10)
      [5D, effective 4D theory and cosmological acceleration];
    De Felice & Tsujikawa JCAP(10)-a1005;
    Wu & Wang PRD(12) [with torsion, in Riemann-Cartan spacetime];
    Rasouli et al CQG(14)-a1405 [in arbitray dimensions];
    Caramês et al EPJC(14)-a1409 [Brans-Dicke-Rastall theory, with violation of conservation laws];
    > s.a. hořava gravity; lovelock gravity.
  @ Related topics: Arazi & Simeone MPLA(00)gq [linearized, strings];
    Rador PLB(07) [Brans-Dicke type higher-order gravity];
    Chang-Young et al CQG(12)-a1105 [as an entropic phenomenon];
    Roshan & Shojai CQG(11)-a1106 [post-Newtonian limit];
    Almeida et al PRD(14)-a1311 [geometrical scalar-tensor theory];
    Kofinas AP-a1510 [complete theory].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 nov 2020