|  Dynamics of Gravitating Bodies | 
Single Objects in General
  > s.a. cosmology [with isolated bodies]; gravitating
  fields [including shells]; neutron stars; pulsars.
  * Idea: Study of the dynamics
    of isolated gravitating bodies, including stars and black holes, and their
    properties such as conserved quantities; Effective dynamics of extended objects
    also provides useful approximations for gravitational wave production.
  * Inequalities: For a spherically
    symmetric charged body, 2R > Q; This inequality is sharp.
  * In alternative theories:
    (Unless otherwise specified, in this page gravitational theory is described by 4D
    general relativity); In scalar-tensor theories there is an interval of mass values
    in which there is a phase transition (Damour & Esposito-Farèse 92),
    with the stable configurations being the "scalarized" solutions.
  @ General references: Szybka a1409-in [overview].
  @ Stars in general relativity: Hartle ApJ(67);
    Hartle ApJ(75);
    Hartle & Friedman ApJ(75);
    Hartle & Munn ApJ(75);
    Nilsson & Uggla AP(01)gq/00,
    AP(01)gq/00;
    Passamonti et al PRD(05) [oscillations];
    Pfister CQG(11) [static spherical, perfect fluid];
    Mak & Harko EPJC(13)-a1309 [general solution, isotropic fluid sphere];
    Oliveira et al EPJC(14)-a1409 [Newtonian view with pressure].
  @ Static objects: Wald PRD(72) [electromagnetic field];
    Radford gq/06-wd [spherical symmetry];
    Andersson et al CPAM(08)gq/06 [elastic bodies];
    González & Letelier PRD(04),
    Vogt & Letelier PRD(05)gq [thick disk];
    Karageorgis & Stalker CQG(08)-a0707 [bounds on 2m/r];
    Ponce de León G&C(08)-a0711 [non-Schwarzschild star exteriors];
    Bimonte et al PRD(08)-a0801 [magnetic stresses and energy];
    Kozyrev a1102
      [spheroidal Einstein-Maxwell solutions].
  @ Spherical objects:
    Füzfa et al GRG(02)gq/01 [ρ = constant sphere];
    Mahomed NCB(03) [charged spheres];
    Boonserm et al PRD(05)gq [perfect fluid spheres];
    Herrera et al PRD(09)-a0903 [and scalars from orthogonal splitting of Riemann tensor];
    Nandra et al PRD(13)-a1307 [in an expanding universe];
    Boonserm & Visser IJMPD(16)-a1501 [anisotropic fluid spheres];
    Anglada et al PRD(16)-a1511 [radius-charge inequality];
    Burikham et al EPJC(16)-a1512 [minimum and maximum mass/radius ratio];
    Hod PLB(18)-a1902 [no-go theorem for static boson stars].
  @ Other extended objects:
    Arnowitt et al AP(65) [minimum size];
    Capovilla & Guven PRD(97)mp/98,
    PRD(98)mp [with edges];
    Vaidya GRG(99),
    GRG(99) [star + radiation];
    Zsigrai CQG(03)gq [ellipsoids];
    Anandan et al IJMPD(03)gq-GRF,
    PRD(03) [action];
    Capovilla et al CQG(04) [Hamiltonian];
    Racine & Flanagan PRD(05)gq/04 [arbitrary shape, PN-1];
    Goldberger & Rothstein PRD(06)ht/04 [effective field theory];
    Blanchet et al PRD(05) [PN expansion of field];
    Choquet-Bruhat & Friedrich CQG(06) [isolated bodies, initial-value problem];
    Böhmer & Harko CQG(06) [bounds on physical parameters],
    GRG(07)gq [lower bound for the mass-radius ratio];
    Galloway & O'Murchadha CQG(08)-a0802 [sizes];
    Steinhoff & Puetzfeld PRD(10)-a0909 [equations of motion, multipolar expansion];
    Andersson a1407-talk [finite self-gravitating elastic objects];
    Reiris GRG(14) [constraints on shape];
    > s.a. astronomical objects [boson stars]; black
      holes; collapse; Gravastar;
      neutron-star models.
  @ In other theories:
    Arminjon RJP(03)gq/02 [scalar gravity];
    Babichev & Langlois PRD(09)-a0911,
    PRD(10)
      [relativistic stars in f(R) and scalar-tensor theories];
    Koshelev & Mazumdar PRD(17)-a1707 [compact objects without horizons in infinite-derivative theories];
    > s.a. 2D gravity; neutron stars.
  > Related topics:
    see ADM formalism; Elasticity;
    electricity; force [maximum];
    newtonian gravity; semiclassical
    general relativity; Tolman-Oppenheimer-Volkoff Equations.
Rotating Objects
  * Instabilities:
    All rotating perfect fluid stars in general relativity are unstable to
    certain non-axisymmetric perturbations (CFS) instability).
  @ Books, reviews: Stergioulas LRR(98)ap-LRR(03);
    Friedman & Stergioulas 13; 
  @ General references: Hartle & Sharp PRL(65) [equilibrium];
    Xanthopoulos JMP(81);
    Manko PRL(90);
    Mars & Senovilla MPLA(98)gq;
    Gergely et al gq/98-proc;
    Bradley et al CQG(00)gq [pfluid ball];
    Zhang et al MPLA(01);
    Tartaglia gq/02,
    comment Iorio GRG(04)gq/03 [weak field];
    Abramowicz et al gq/03,
    Martín-Martín et al gq/04-conf [solution];
    Karpov G&C(04);
    Anderson gq/05 [approximate equations of motion];
    Porto PRD(06)gq/05 [spin effects];
    Cabezas et al GRG(07) [constant mass density];
    Vogt & Letelier PRD(07) [thick disk];
    Meinel a0911-MG12 [equilibrium configurations];
    Steinhoff & Wang PRD(10),
    Steinhoff PhD(10)-AdP(11)-a1106 [3.5 post-Newtonian order, ADM formulation];
    Gourgoulhon a1003-ln [rotating relativistic stars];
    Boshkayev et al PRD(12)-a1207 [slowly rotating, slightly deformed astrophysical objects];
    Johannsen JPCS(13)-a1210 [rotating black holes];
    Reina & Vera CQG(15)-a1412
    + CQG+ [second-order perturbed matching theory];
    van Holten IJGMP(16)-a1504-conf;
    Schiffrin CQG(15)-a1506 [stars for which thermodynamic equilibrium implies dynamic equilibrium].
  @ Special types of solutions: Lynden-Bell PRD(04)gq [charged sphere];
    Nolan & Vera gq/05-proc [cosmological backgrounds];
    Bonnor GRG(05) [negligible mass];
    Quevedo MG12(12)-a1205 [charged, matching conditions];
    Quevedo a1606 [quadrupolar metrics].
  @ Stability: Hartle et al ApJ(72);
    Prabhu et al CQG(16)-a1606 [axisymmetric perturbations];
    Hadžić et al a1810.
  @ Differentially rotating:
    Molina & Ruiz GRG(17)-a1702 [approximate global stationary and axisymmetric solution].
  @ Tidal dynamics:
    Pani et al PRD(15)-a1503,
    Landry & Poisson PRD(15)-a1503 [slowly rotating bodies];
    Endlich & Penco PRD(16)-a1510 [effective field theory approach]. 
  @ Kerr interiors: Cohen JMP(67) [slow rotation];
    Burghardt SBLS(07)-a0711, SBLS(07)-a0711 [differentially rotating fluid];
    Wiltshire GRG(12)-a1104;
    Marsh a1404.
  @ In other theories: Frolov gq/07-proc [Poincaré gauge theory];
    Sotani PRD(10)-a1003 [slowly rotating stars in TeVeS];
    Santos PLA(12) [in f(R) gravity].
Moving and Multiple Objects
  > s.a. ADM formalism; black holes;
  gravitating many-body systems; spinning particles.
  @ General references:
    Harte PRD(06)gq/05 [in flat space];
    Hennig et al ApJ(07)gq [inelastic collisions and radiated energy];
    Białynicki-Birula & Białynicka-Birula PRA(08)-a0804 [electromagnetic radiation];
    Harte CQG(12)-a1103;
    Henriques & Natário JOTA-a1105 [the "rocket problem"];
    Yamada & Asada PRD(12) [three-body problem, triangular solution];
    Zschocke & Soffel CQG(14) [one extended moving body, N pointlike bodies, post-Minkowskian];
    Mikkola 20 [few-body dynamics];
    > s.a. self force.
  @ Small bodies: Pound PhD(10)-a1006 [and self force];
    Geroch & Weatherall CMP(18)-a1707 [and wave packets, optical limit];
    > s.a. test-body motion.
  @ Binaries, two-body systems: Hartung & Steinhoff AdP(11)-a1107 [Hamiltonian for two spinning objects];
    Levi PRD(12)-a1107;
    Balmelli & Jetzer PRD(13)-a1305,
    PRD(15)-a1502 [next-to-leading order spin-spin coupling];
    Vaidya PRD(15)-a1410 [spin-dependent Hamiltonians];
    De Laurentis et al a1811 [in f(R) gravity].
  @ Triple, three-body systems: Yamada & Asada PRD(10)-a1010 [collinear solution];
    Will a2011 [hierarchical].
  > Related topics: see chaotic
    motion; orbits of gravitating objects [including equations of motion];
    self-force.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 30 dec 2020