|  Black-Hole Geometry and Topology | 
Black-Hole Interior > s.a. quantum black holes.
  @ General references: Frolov et al PRD(90);
    Poisson & Israel PRD(90);
    Balbinot et al PLA(91);
    Bonanno et al PRD(94)gq;
    Burnett PRD(95)gq [journey inside a black hole];
    Artemova & Novikov ap/02 [intro];
    Novikov gq/03;
    Hamilton & Pollack PRD(05)gq/04,
    PRD(05)gq/04 [self-similar, accreting, charged];
    Culetu IJMPA(09)ht/07;
    Lewis & Kwan PASA(07)-a0705 [maximizing survival time];
    Hamilton & Polhemus a0903 [view from the inside];
    Hamilton & Polhemus PRD(11)-a1010,
    Hamilton PRD(11)-a1010,
    PRD(11)-a1010,
    a1108 [realistic accreting, rotating black holes];
    Dokuchaev CQG(11)-a1103 [interior bound periodic orbits],
    G&C(12)-a1203 [life inside?];
    Culetu PLA(12) [Rindler-type geometry];
    Smith & Mann CQG(14)-a1309 [probing the interior with an Unruh-DeWitt detector outside the horizon];
    Nomura et al PRL(15)-a1412 [in quantum gravity];
    Ganguly et al CQG(15)-a1411 [global structure, dynamical systems approach];
    Brustein et al PRD(17)-a1701 [and the detection of gravitational waves];
    Brustein & Medved PRD(19)-a1805 [interior matter];
    Alesci et al PLB(19)-a1904 [in quantum gravity];
    Hamilton a1907-MGXV [astronomically realistic];
    Oshita et al a2001 [quantum black hole seismology].
  @ Specific theories and black-hole types:
    Krori et al PLA(88) [higher-dimensional, Schwarzschild-like];
    Donets et al PRD(97) [Einstein-Yang-Mills].
  @ Appearance: news disc(11)jun [Andrew Hamilton's visualization].
  @ Volume: DiNunno & Matzner GRG(10)-a0801;
    Christodoulou & Rovelli PRD(15)-a1411;
    Bengtsson & Jakobsson MPLA(15)-a1502 [large interiors];
    Ong JCAP(15)-a1503 [volume not necessarily a monotonically increasing function of surface area].
  @ Charged black holes: Dafermos CPAM(03)gq;
    Hwang & Yeom PRD(11);
    Henry et al a1512
      [rotating, plots of all independent curvature invariants].
Geometry in General > s.a. black-hole solutions
  [including deformed black holes]; Supertranslations.
  * Hawking's theorem: If Λ
    = 0, the constant time sections of the horizon of stationary black holes are
    topologically spheres.
  * Angular momentum-area inequality:
    The angular momentum J of an axially symmetric black hole with surface
    area A satisfies
\[ \vert J\vert \le {A\over8\pi}\sqrt{\left(1-{\Lambda A\over4\pi}\right)\left(1-{\Lambda A\over12\pi}\right)} .\]
    where Λ is the cosmological constant; The bound is saturated for
    the extreme Kerr-de Sitter family of metrics.
  * Firewall: 2012, The idea
    that information escaping from a black hole ignites a firewall at the event
    horizon that would consume anything falling in, a claim which contradicts the
    general relativity assumption ("no drama" scenario) that locally
    nothing happens at the horizon; 2014, Hawking claims that black holes have
    apparent horizons rather than event horizons, thus avoiding the paradox; 2017,
    There is no concrete model for a firewall yet, but some phenomenological
    consequences from accreting matter and emitted radiation and neutrinos have
    been worked out.
  @ (Near-)horizon geometry:
    Balasubramanian & Larsen NPB(98) [4D];
    Cvetič & Larsen NPB(98) [5D];
    Medved et al CQG(04)gq [static 4D];
    Kang et al PRD(04)ht [any dimension];
    Kunduri CQG(11)-a1104-GR19 [in 4D and 5D];
    Kunduri & Lucietti LRR(13) [extremal black holes];
    Susskind a1403 [and computational complexity];
    Chruściel et al CQG(18)-a1707 [uniqueness];
    Barrow a2005 [fractal horizon geometry];
    Murk & Terno a2010;
    > s.a. black-hole entropy.
  @ Inequalities: Dain in(09)-a0911 [angular momentum-mass inequality];
    Jaramillo et al PRD(11)-a1106 [non-vacuum spacetimes];
    Dain et al CQG(12)-a1109,
    Simon CQG(12)-a1109 [area-charge inequality];
    Yazadjiev PRD(13)-a1210 [including charge, Einstein-Maxwell-dilaton theory];
    Dain GRG(14)-a1401 [rev];
    Gabach Clement et al CQG(15)-a1501 [in cosmological spacetimes];
    Dain PRD(15)-a1506 [between size, charge, angular momentum and energy];
    Csukás GRG(17)-a1607 [using quasilocal mass, spherical symmetry];
    Alaee et al AHP(17)-a1608 [mass-angular momentum-charge, in 5D minimal supergravity];
    Jaracz & Khuri PRD(18)-a1802 [for general bodies];
    > s.a. gravitating bodies.
  @ Area product formulae: Cvetič et al PRL(11)-a1011;
    Page & Shoom a1504 [universal area product].
  @ Firewall: Almheiri et al JHEP(13);
    Marolf & Polchinski PRL(13)
    + Karch Phy(13);
    Mathur & Turton NPB(14)-a1306;
    Nomura PRD(13)-a1308 [theory of horizons];
    news SA(13)oct;
    Berenstein & Dzienkowski a1311 [numerical evidence];
    Hossenfelder PRD(15)-a1401 [a local observer does not notice
      the presence of the boundary and does not encounter a firewall];
    Devin a1401 [rev];
    Hawking a1401
    + news ns(14)jan,
    sa(14)mar;
    Israel a1403 [the horizon as a hot massless shell, 2D model];
    Abramowicz et al PRL(14) [upper limit of \(1/(8\pi M)\) to the surface density of a firewall];
    Moffat & Toth a1404 [and Karlhede's invariant];
    Stoltenberg & Albrecht PRD(15)-a1408 [questioning firewalls];
    Dündar MS-a1409 [overview];
    Germani & Sarkar FdP(16)-a1502 [firewalls as artefacts];
    Hotta & Sugita PTEP(15)-a1505 [firewalls generically do not emerge];
    Chen et al PRL(16)-a1511 [firewalls outside the horizon];
    Ori GRG(16) [alternative viewpoint based on semiclassical gravity];
    Thanjavur & Israel a1601;
    Nomura & Salzetta PLB(16)-a1602 [firewalls need not exist];
    Bryan & Medved AHEP-a1603 [and information];
    news pw(18)may [and gravitational-wave echoes];
    Rovelli a1902 [subtle unphysical hypothesis];
    > s.a. entanglement in field theory; matter near black holes.
  @ Related topics:
    Anderson & Mull gq/97,
    gq/97-MG8 [constraints on static geometry];
    Abramowicz & Sonego 02 [optical geometry];
    Parikh PRD(06)ht/05 [3-volume];
    Álvarez NPPS(09)-a0904 [without coordinates];
    Gibbons AIP(12)-a1201 [results and conjectures for 4 and higher dimensions];
    Bini et al IJGMP(15)-a1509 [stationary spacelike slicings];
    > s.a. Smarr Formula [for black-hole mass].
  > Singularities: see
    spacetime singularities; cosmic censorship;
    models for topology change [censorship, genus].
  > Related topics:
    see event horizons; horizons
    [isolated, dynamical, trapping]; Mass Inflation.
Other Topologies and Higher Dimensionalities
  * Black strings: Gregory &
    Laflamme argued that an instability along the extra dimension causes the
    Schwarzschild black string to break up into disjoint black holes; Horowitz
    and Maeda derived bounds on the rate at which the smallest sphere can pinch off.
  @ Black rings:
    Emparan & Reall CQG(06) [rev];
    Elvang et al JHEP(06)ht [dynamics, instability];
    Iizuka & Shigemori PRD(08) [in 4D];
    Chruściel & Cortier JDG-a0807 [geometry];
    Astefanesei et al JHEP(09)-a0909 [equilibrium conditions];
    Kleihaus et al a1205
    → PLB(13) [6D];
    Dadras et al EPL(12)-a1207;
    Armas & Blau JHEP(15)-a1504 [helicoidal black rings and black tori];
    Chervonyi PRD(15)-a1510 [in D > 5];
    > s.a. laws of black-hole dynamics.
  @ Black strings: Gregory & Laflamme PRL(93)ht,
    NPB(94)ht,
    Horowitz & Maeda PRL(01)ht,
    Choptuik et al PRD(03)gq,
    Kol & Sorkin CQG(04)gq [instability];
    Kol & Wiseman CQG(03)ht;
    Kol et al PRD(04)ht/03 [and black holes];
    Cardoso & Dias PRL(06)ht [and membrane];
    Kleihaus et al JHEP(06)ht [non-uniform];
    Chowdhury et al NPB(07) [phase transition];
    Yoo et al IJGMP(11) [slowly rotating, Gregory-Laflamme instability];
    Gregory a1107-ch [rev];
    Lehner & Pretorius a1106-ch [Gregory-Laflamme instability, final state];
    Ida JMP(17)-a1609 [no arbitrarily long black strings].
  @ In higher dimensions: Helfgott et al JHEP(06)ht/05;
    Galloway & Shoen CMP(06);
    Rácz CQG(08)-a0806 [proof of generalized Hawking theorem];
    Hollands et al AHP(11)-a1002 [5D, restrictions on topology];
    Ida & Okamoto PTP(12)-a1105;
    Galloway a1111-ch;
    Lessel a1210;
    Taliotis PRD(12);
    > s.a. higher-dimensional
      solutions; uniqueness and hair.
  @ Other topology:
    Galloway CMP(93);
    Chruściel & Wald CQG(94)gq;
    Chruściel et al CQG(06) [no degenerate components for static vacuum];
    Bambi & Modesto PLB(11)-a1107 [in lqg and other gravity theories];
    Monte IJMPCS(12)-a1111 [Schwarzschild black hole];
    Klemm PRD(14)-a1401 [non-compact manifolds with finite volume];
    Bohn et al PRD(16)-a1606 [toroidal topology, binary merger simulation];
    Khuri et al LMP(18)-a1804 [restrictions];
    Nampalliwar et al a2008
      [tests with with electromagnetic observations];
    > s.a. horizons; modified
      theories; black-hole phenomenology.
Other References > s.a. Antigravity;
  particle effects and models;
  thermodynamics [phase transitions]; black-hole
  phenomenology; wormholes.
  @ Membrane paradigm: & Damour (78);
    Price & Thorne PRD(86),
    SA(88)apr; Thorne et al 86;
    Carter in(92)ht/04 [equilibrium geometry];
    Parikh & Wilczek PRD(98)gq/97;
    Straumann in(98)ap/97;
    Parikh PhD(98)ht/99;
    Cardoso et al IJMPD(08)-a0705 [black objects in higher dimensions];
    Mathur GRG(10)-a1005-GRF
    = IJMPD(10)
      [realized by degrees of freedom just outside the horizon];
    Grumiller & Sheikh-Jabbari IJMPD(18)-a1805-GRF [and soft hair].
  @ Membrane paradigm, alternative gravity theories:
    Chatterjee et al CQG(12)-a1012 [in f(R) gravity];
    Jacobson et al PRD(17)-a1107 [in Einstein-Gauss-Bonnet gravity, D ≥ 5];
    Kolekar & Kothawala JHEP(12)-a1111 [Lanczos-Lovelock gravity].
  @ Other approaches / models:
    Abramowicz & Sonego 02 [optical geometry];
    Gourgoulhon & Jaramillo NAR(08)-a0803-proc [hypersurfaces foliated by trapped surfaces];
    Skenderis & Taylor PRP(08)-a0804 [fuzzball proposal];
    Hamilton & Lisle AJP(08)jun [river model];
    Caldarelli et al JHEP(09)-a0901 [lump of fluid].
  @ Non-singular:
    Newman GRG(89);
    Berman gq/04;
    Hayward PRL(06) [formation + evaporation];
    Pérez et al IJTP(14) [instability of Mbonye-Kazanas regular interior model];
    Barceló et al CQG(15)-a1409 [time-symmetric bounce];
    Chinaglia a1805 [no-go theorem];
    Miao & Yang a2009 [connection to black-hole thermodynamics and dynamics]; > s.a. 4D and modified solutions.
  @ Related topics: Laughlin IJMPA(03)gq-fs [vacuum phase boundaries];
    Mei et al JHEP(13)-a1305 [effective action for a fluctuating horizon].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 feb 2021