|  Hořava (Hořava-Lifshitz) Gravity | 
In General
  > s.a. gravity theories; Lifshitz-Type Theories;
  spacetime dimensionality.
  * Idea: A non-relativistic
    renormalizable theory of gravitation which reduces to Einstein's general
    relativity at large distances but violates Lorentz invariance at small
    distances and introduces anisotropic spacetime scaling; Proposed as a
    candidate for a UV completion of Einstein's theory.
  @ General references: Hořava JHEP(09)-a0812 [z = 2 membrane precursor];
    Hořava PRD(09)-a0901 [z = 3 proposal];
    Nikolić MPLA(10)-a0904 [and notion of particles];
    Volovik JETPL(09)-a0904 [and emergent gravity, condensed-matter examples];
    Charmousis et al JHEP(09)-a0905 [strong-coupling problems];
    Li & Pang JHEP(09)-a0905 [canonical formulation problems];
    Germani et al JHEP(09)-a0906 [as gauge-fixed vector-tensor theory of gravity];
    Mukohyama JCAP(09)-a0906 [caustic avoidance];
    Hořava & Melby-Thompson GRG(11)-a0909 [conformal infinity];
    Merali SA(09)dec;
    Soo et al PLB(11)-a1007 [as a master constraint theory];
    Padilla JPCS(10)-a1009;
    Sotiriou JPCS(11)-a1010 [status];
    Pinzul CQG(11)-a1010 [spectral-geometry approach];
    Bemfica a1010 [diffeomorphism invariance];
    Visser JPCS(11)-a1103 [personal perspective];
    Alexander et al PRD(12)-a1206 [from a Fermionic Aether in Ashtekar gravity];
    Wang IJMPD(17)-a1701 [progress report].
  @ Hamiltonian formulation:
    Donnelly & Jacobson PRD(11)-a1106;
    Bellorín & Restuccia PRD(11)-a1106 [lowest-order effective action];
    Mukohyama et al PRD(15)-a1504 [non-projectable theory];
    Devecioğlu & Park EPJC-a2001;
    > s.a. other versions below. 
  @ Extra scalar-graviton mode:
    Cai et al PRD(09)-a0905;
    Blas et al JHEP(09)-a0906 [and inconsistency];
    Kobakhidze PRD(10)-a0906;
    Afshordi PRD(09)-a0907 [the low-energy limit is the cuscuton model];
    Park CQG(11)-a0910 [decoupling and consistency];
    Koyama & Arroja JHEP(10)-a0910;
    Papazoglou & Sotiriou PLB(10)-a0911 [extended theory, strong coupling];
    Wang & Wu PRD(11)-a1009 [stability and strong coupling];
    Zhu et al PRD(11)-a1108 [elimination by local U(1) symmetry].
  @ Consistency, issues:
    Henneaux et al PRD(10)-a0912;
    Bellorín & Restuccia IJMPD(12)-a1004;
    Cartas-Fuentevilla a1304.
  @ And Lorentz symmetry: 
    Rembieliński PLB(14)-a1309 [hidden];
    Coates et al PRD(19)-a1805 [ways to recovering at low energy].
  @ Related topics: Calcagni PRD(10)-a0905 [+ scalar field, and detailed balance];
    Bogdanos & Saridakis CQG(10)-a0907 [ghost-like scalar instabilities];
    Myung PLB(09)-a0907,
    PLB(09)-a0909 [and generalized uncertainty principle];
    Bellorín & Restuccia PRD(11)-a1010 [non-projectable, constraint structure];
    Vernieri & Sotiriou PRD(12)-a1112,
    JPCS(13)-a1212 [detailed balance];
    Bellorín et al PRD(12) [constraints and positive energy];
    Alencar et al PLB(15)-a1505 [effective spacetime dimension];
    Frusciante et al PDU(16)-a1508 [Effective Field Theory formalism];
    Pinzul a1603-proc [spectral geometry approach].
  > Related topics:
    see Effective Field Theory;
    phenomenology of hořava gravity [including solutions];
    positive-energy theorem; quantum theory.
  > Online resources:
    see Wikipedia page.
Different Versions > s.a. born-infeld theory.
  * Non-projectable:
    The commutator of two local Hamiltonian constraints leads to severely
    restrictive secondary constraints and "troubles".
  * Projectable: It has an
    integrated Hamiltonian constraint and consistent constraint algebra, and
    also an extra graviton mode, which can be problematic and is eliminated
    in Einstein's theory by the local Hamiltonian constraint.
  @ General references:
    Sotiriou et al PRL(09)-a0904 [phenomenologically viable extension],
    JHEP(09)-a0905 [classical evolution equations, graviton propagators];
    Weinfurtner et al JPCS(10)-a1002 [projectable];
    Chiang et al JCAP(10)-a1007 [constraints from cosmological acceleration];
    Carloni et al PRD(10) [first-order, Hamiltonian and f(R) cosmology];
    Shu a1009 [with stable ground state];
    Restuccia & Sotomayor PRD(13)-a1302
      [without extra modes and equivalent to general relativity at the linearized level];
    Chaichian et al PRD(15)-a1509 [without the unwanted scalar graviton];
    Chagoya & Tasinato CQG(19)-a1805 [scalar-tensor realization];
    Barausse et al a2101 [degenerate generalization].
  @ Covariant version:
    Hořava & Melby-Thompson PRD(10)-a1007 [extra U(1) symmetry and "non-relativistic general covariance"];
    da Silva CQG(11)-a1009 [alternative approach];
    Alexandre & Pasipoularides PRD(11)-a1010 [spherical solutions];
    Huang & Wang PRD(11)-a1011;
    Hořava CQG(11)-a1101-GR19 [and causal dynamical triangulations].
  @ Healthy extension: Blas et al PRL(10)-a0909;
    Klusoň JHEP(10)-a1004,
    PRD(10) [Hamiltonian formulation],
    PRD(10) [and ghost condensation];
    Kimpton & Padilla JHEP(10)-a1003;
    Blas et al JHEP(11)-a1007 [healthy non-projectable extension, and phenomenology].
  @ Mixed-derivative extension:
    Colombo et al PRD(15)-a1410;
    Coates et al PRD(16)-a1604.
  @ f(R) gravity: Klusoň JHEP(09)-a0907,
    PRD(10)-a0910;
    Wang MPLA(11)-a1003 [dark sector];
    Chaichian et al PLB(10)-a1006 [Hamiltonian analysis];
    Koutsoumbas & Pasipoularides PRD(10)-a1006 [quadratic and cubic terms];
    Klusoň PRD(11)-a1108 [equivalence of f(R) and scalar-tensor theories].
  @ And MOND: Romero et al MPLA(10)-a1003;
    Sanders PRD(11) [hiding Lorentz-invariance violation].
  @ And other theories of gravity: Jacobson PRD(10)-a1001,
    PRD(14)-a1310 [and Einstein-aether theory];
    Lee et al PLB(11)-a1003 [Brans-Dicke theory];
    Alexandre et al PRD(10)-a1004 [Liouville-Lifshitz theory];
    Bellorín a1905 [with preferred foliation];
    > s.a. dynamical triangulations.
  @ Other dimensionalities:
    Exirifard a0911 [higher-dimensional];
    Sotiriou et al PRD(11)-a1103 [lower-dimensional].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 jan 2021