|  Unimodular Gravity / Relativity | 
In General
  * Idea: A generalization of
    general relativity (or other theories of gravity), in which the cosmological constant appears as a single
    additional variable (not a field), but is then seen to be a constant of the
    motion; It is generally assumed to be equivalent to general relativity, but
    the quantum theories may be inequivalent.
  * Motivation: It provides a
    possible approach to the problem of time in quantum gravity, and to the
    cosmological constant problem.
  * History: In his paper of 4 November 1915,
    Einstein proposed the equations Rim
    = −κ Tim as his
    new field equations (before proposing the definitive ones in his 25 November 1915 paper);
    These equations are invariant under unimodular transformations.
  @ General references: [in Geroch JMP(70)];
    Dieckmann GRG(88);
    Sorkin pr(88);
    Brown & York PRD(89);
    Henneaux & Teitelboim PLB(89);
    Unruh PRD(89);
    Abbassi & Abbassi FPL(01)gq/00;
    Bock IJTP(03)gq [equations for null cones and volume element];
    Barceló et al PRD(14)-a1401 [from graviton self-interactions];
    Álvarez & González-Martín PRD(15)-a1506 [first-order Lagrangians];
    Álvarez et al PRD(16)-a1604 [gauge symmetries];
    Oda PRD(16)-a1606 [conformal symmetry].
  @ And the cosmological constant: Ng & Van Dam IJMPD(01)ht/99-conf [variable];
    Davidson & Rubin CQG(09)-a0905;
    Totani JCAP(16)-a1512.
  @ Arguments against:
    Kuchař PRD(91).
Versions Based on General Relativity
  > s.a. metric decomposition [conformal-traceless form].
  * In general: One starts with
    the same action as in general relativity, and adds a condition on the class
    of metrics one considers in the variation.
  * Unit metric determinant
    version: The metric satisfies the condition det g = 1.
  * Fixed volume element version:
    The volume element defined by the metric matches a preferred one,
    |det g|1/2 = ω.
  * Fixed total volume version: The total volume
    of the spacetime region matches a fixed value, ∫ d4x
    |det g(x)|1/2 = V.
  * Variation – time as past volume of
    a point: V(p) is the volume of the past of p; It is
    strictly increasing along timelike curves iff (M, g) is chronological;
    If (M, g) is strongly causal, then it is strictly increasing along causal
    curves; If the latter is true, then (M, g) is causal; If (M,
    g) is globally hyperbolic, then V(p) is continuous everywhere.
  @ Unit determinant version:
    Buchmüller & Dragon PLB(89);
    Kreuzer CQG(90);
    Ng & van Dam PRL(90),
    JMP(91) [has refs];
    Petrov MPLA(91);
    Ng IJMPD(92);
    Álvarez & Faedo PRD(07)ht [and coupling of KE and PE to gravity];
    Fiol & Garriga JCAP(10)-a0809 [semiclassical];
    Jain et al JCAP(12)-a1108,
    JCAP(12)-a1109;
    Jora a2004 [gauge condition revisited].
  @ Unit determinant version, canonical:
    Unruh PRD(89);
    Unruh & Wald PRD(89);
    Klusoň PRD(15)-a1409.
  @ Fundamental volume element: Anderson & Finkelstein AJP(71)aug;
    Finkelstein et al JMP(01)gq/00.
  @ Time = Volume: Bombelli in(91);
    Sorkin IJTP(94).
  @ Time = Volume, canonical:
    Bombelli, Couch & Torrence PRD(91).
  @ Transverse gravity: López-Villarejo JPCS(10)-a1001,
    JCAP(11)-a1009 [TransverseDiff gravity];
    Álvarez & Vidal PRD(10)-a1001;
    Álvarez JCAP(12)-a1204 [gauge and equivalence principle];
    Álvarez & Herrero-Valea JCAP(13)-a1209 [with external sources].
  @ From coupling to 3-form field:
    Henneaux & Teitelboim PLB(84);
    Teitelboim PLB(85) [and black holes];
    Brooks NPB(94)ht/99.
  @ Other: Wilczek PRL(98)ht [metric from gauge structure and volume];
    Jiroušek & Vikman JCAP(19)-a1811
      [Weyl-invariant, generally-covariant form formulated as vector-tensor theory with higher derivatives];
    Hammer et al a2001
      [Pontryagin density of gauge field as volume element].
Quantum Theory
  @ General references:
    Ng & van Dam PRL(90);
    Gamboa & Mendez NPB(01)ht/00 [3D, strong coupling, path integral];
    Calmet EPL(07)ht/05 [and non-commutative spacetime],
    MPLA(07)-a0704 [and fundamental length];
    Smolin PRD(11)-a1008 [and loop quantum gravity];
    Eichhorn CQG(13)-a1301 [RG flow and UV fixed point];
    Álvarez & Herrero-Valea PRD(13)-a1301 [absence of conformal anomaly];
    Saltas PRD(14)-a1410 [UV structure];
    Álvarez et al PRD(15)-a1505,
    JHEP(15)-a1505 [quantum corrections];
    Burger et al a1511 [KLT relations];
    de León et al PRD(18)-a1710 [path integral, one-loop effective action];
    Yamashita PRD(20)-a2003 [connection representation, Hamiltonian analysis];
    de Brito & Pereira a2007 [beyond perturbation theory].
  @ And the cosmological constant: Smolin PRD(09)-a0904;
    Álvarez et al JHEP(15)-a1505;
    Percacci FP(18)-a1712-proc;
    > s.a. cosmological constant.
  @ And general relativity: Álvarez JHEP(05)ht [vs general relativity, quadratic (Fierz-Pauli) regime];
    Padilla & Saltas EPJC(14)-a1409 [equivalence to general relativity];
    Bufalo et al EPJC(15)-a1505 [two versions, path integral quantization];
    Benedetti GRG(16)-a1511 [G is independent of field redefinitions];
    Herrero-Valea JHEP(18)-a1806 [equivalence of the S-matrix around flat space-time];
    > s.a. matter below.
  @ In quantum cosmology: Daughton et al gq/93-conf [k = 1, initial conditions and unitarity];
    Chiou & Geiller PRD(10)-a1007,
    Bunao CQG(17)-a1604 [lqc];
    Riahi Gal(18)-a1801 [wavepacket evolution].
  @ Related topics: Daughton et al PRD(98)gq [instantons, unitarity];
    Álvarez et al EPJC(16)-a1605 [tree level scattering amplitudes];
    de Brito et al PRD-a2012 [asymptotically safe].
   Approaches:
    see approaches to quantum gravity [volume-preserving diffeomorphisms];
    covariant quantum gravity; path-integral formulation.
 Approaches:
    see approaches to quantum gravity [volume-preserving diffeomorphisms];
    covariant quantum gravity; path-integral formulation.
Related Topics
  > s.a. BRST symmetry; generalized
  uncertainty principle; gravitational thermodynamics.
  @ Energy-momentum conservation: Tiwari JMP(93),
      gq/03/JMP;
    Bock a0704,
    a0704 [modified, and dark matter / dark energy].
  @ Scale invariance: Shaposhnikov & Zenhausern PLB(09)-a0809 [and dark energy];
    Singh MPLA(13)-a1205.
  @ And cosmology: Álvarez & Herrero-Valea a1302-wd [solutions];
    Gao et al JCAP(14)-a1405,
    Basak et al GRG(16)-a1511 [cosmological perturbations];
    Cho & Singh a1412 [and inflation];
    García-Aspeitia et al PRD(19)-a1903,
    PDU-a1912 [acceleration];
    Corral et al PRD(20)-a2005 [acceleration and energy diffusion];
    Kamenshchik et al JETPL(20)-a2003 [generalized, Friedmann and Kantowski-Sachs spacetimes].
  @ And matter: Klinkhamer IJMPD(17)-a1604 [with vacuum-matter energy  exchange];
    Martín JCAP(17)-a1704 [lepton anomalous magnetic moment];
    González-Martín & Martin JCAP(18)-a1711 [scattering of massive scalar particles];
    Herrero-Valea & Santos-García JHEP(20)-a2006 [non-minimal coupling].
  @ Other solutions: Chaturvedi et al IJMPD(17)-a1610 [Reissner-Nordström solution];
    Astorga-Moreno et al JCAP(19)-a1905 [stellar objects].
  @ Time, other: Hosoya & Soda PTP(90);
    Bertolami IJMPD(95);
    Earman SHPMP(03) [and the cosmological constant, conceptual];
    Farajollahi GRG(05)-a0801,
    IJTP(08) [and observables];
    Shlaer a1411
    [metric volume element as total derivative].
Versions Based on Other Gravity Theories
  @ Unimodular f(R) gravity: Eichhorn JHEP(15)-a1501 [renormalization group flow];
    Nojiri et al JCAP(16)-a1512;
    Nojiri et al PRD(16)-a1601 [bounce universe history];
    Sáez-Gómez PRD(16)-a1602;
    Odintsov & Oikonomou ASS(16)-a1602 [unimodular mimetic f(R) gravity, and inflation];
    Nojiri et al MPLA(16)-a1605 [Newton's law];
    > s.a. early-universe models [bounces].
  @ Unimodular f(T) gravity:
    Nassur et al EPJP(16)-a1602;
    Bamba et al MPLA(17)-a1605 [inflationary cosmology].
  @ Unimodular supergravity: Nishino & Rajpoot PLB(02)ht/01;
    Anero et al JHEP(20)-a1911 [off-shell N = 1, d = 4].
  @ Unimodular versions of other generalized theories:
    da Rocha et al PRD(10)-a1101 [in teleparallel gravity];
    Bradonjić & Stachel EPL(12)-a1110 [unimodular conformal and projective relativity];
    Nojiri et al CQG(16)-a1601 [unimodular mimetic gravity];
    Houndjo EPJC(17)-a1706 [unimodular f(G) gravity];
    Rajabi & Nozari PRD(17)-a1710 [unimodular f(R,T) gravity];
    Bonder & Corral PRD(18)-a1802 [unimodular Einstein-Cartan gravity].
    @ And cosmology: Alexander & Carballo-Rubio PRD(20)-a1810 [cosmological constant];
    Barvinsky & Kolganov PRD(19)-a1908 [inflation].
  @ Other variations: Abbassi & Abbassi CQG(08)-a0706,
    AP(11)-a1003 [density-metric unimodular gravity, vacuum maximally symmetric solutions];
    Barvinsky & Kamenshchik PLB(17)-a1705 [Lorentz non-invariant generalization, and dark sector];
    Daouda et al IJMPD(19)-a1802 [without energy-momentum conservation];
    Böhmer & Carloni PRD(18)-a1806 [with dynamical volume form];
    Álvarez et al CQG(20)-a1806 [ghost-free massive deformation];
    Barvinsky et al PRD(21)-a2011 [equivalence to k-essence theory];
    Jiroušek et al JCAP(21)-a2011
      [with Newton's constant and Planck's constant as global degrees of freedom];
    Barbero et al PRD(21)-a2101 [parametrized unimodular extension of the Holst action];
> s.a. modifications of general relativity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021