|  Knots and Physics | 
In General
  > s.a. Braids; chaos; knot
  theory [including quantum-gravity-motivated generalizations] and knot invariants;
  Links.
  * Problem:
    Express knot/link invariants in terms of physical observables.
  * In classical mechanics:
    Some trajectories of dynamical systems are closed, and can be knotted.
  * In astronomy: Helicity invariant
    used in dynamo theories of astronomical magnetic fields, and plasma theory.
  @ Reviews, books: Amann et al ed-88;
    Baez & Muniain 94;
    Atiyah RMP(95);
    Hirshfeld AJP(98)dec [rev];
    Labastida ht/02-proc;
    Cho et al IJMPA-a1803 [rev].
  @ General references: Kauffman & Lomonaco SPIE-a1105 [quantizing knots, or more generally algebraic, combinatorial and topological structures];
    Anokhina & Morozov a1802 [evolution in the space of knots].
  @ Energy spectrum: Moffatt Nat(90)sep;
    Ricca PRS(08) [energy bounds from topology];
    > s.a. energy [Menger curvature].
In Field Theory / Particle Physics > s.a. solitons;
  topological field theory.
  * In classical field theory:
    Field theories can have knotted solutions that behave like solitons.
  * In Chern-Simons theory:
    Knots are represented by operators on the Hilbert space of states; Allows
    to calculate invariants.
  @ In field theory:
    Wadati et al PRP(89);
    Atiyah 90; Kauffman 12;
    van Baal & Wipf PLB(01) [pure gauge SU(2) configurations];
    Faddeev a0805-conf [as Yang-Mills excitations];
    Turaev 10;
    Alves et al IJMPA(17)-a1707 [in electromagnetism and fluid dynamics];
    > s.a. Feynman Diagrams.
  @ In statistical mechanics:
    Deguchi et al JPSJ(88);
    Yang & Ge 89; Jones SA(90)nov;
    Wu RMP(92).
  @ And path integrals: Kauffman JMP(95).
  @ And solitons / particles:
    Wadati & Akutsu PTPS(88);
    Faddeev & Niemi Nat(97)ht/96;
    Battye & Sutcliffe PRL(98)ht,
    PRS(99)ht/98;
    Finkelstein IJMPA(07)-a0705 [and electroweak theory].
  @ And Chern-Simons theory: Guadagnini 93;
    Brügmann IJTP(95);
    Gambini & Pullin CMP(97)ht/96 [skein relations, and quantum gravity];
    Labastida ht/00-conf,
    ht/00-proc [rev];
    Hu 01.
  @ Other theories: Ooguri & Vafa NPB(00)ht/99 [and strings];
    Kauffman & Lomonaco a1904
      [knotted zeros in the quantum states of hydrogen].
  @ And quantum groups: Sawin qa/95.
  > Specific theories: see electromagnetism;
    gravitational-wave solutions; gravitomagnetism; spacetime dimension
    [knotted flux tube networks].
In Classical and Quantum Gravity
  > s.a. loop formulation of general relativity; lqg
  in the connection representation and loop representation.
  @ And 3-geometry: Hemion 93;
    Toh & Anderson JMP(95)gq/94.
Phenomenology and Knots in Other Fields
  @ General references:
    Stasiak et al 98 [ideal knots].
  @ Molecular knots: news sci(18)aug [classification, and knots that have been realized]. 
  @ Fluid knots: news ns(13)mar [created in the lab];
    video yt(14)sep [vortex knots in the lab];
    news giz(16)jan [quantum knots in a superfluid].
  @ Related topics: Gaudreau & Ledvinka a1901 [and quantum computing];
    Vandans et al PRE(20) [classifying knots with neural networks].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 mar 2020