|  Supergravity – Versions and Phenomenology | 
Versions of Supergravity Theory
  > s.a. topological field theories.
  * Most promising: N
    = 1 in 10D, with super-Yang-Mills fields.
  * N = 1: Fermions
    and bosons come in pairs; The irreducible representations of the supersymmetry
    algebra are doublets of spin 0-(1/2), (1/2)-1, (3/2)-2 (Majorana gravitino-graviton);
    There can be any number of these, but 1-(3/2) doublets give extended supergravity.
  * N = 2: Unifies
    electromagnetism and gravity by adding a complex (Dirac) gravitino to the
    graviton, into one superparticle.
  * N < 8:
    Generalized general relativity with 1 graviton and N gravitinos,
    rotating into each other under supersymmetry or global U(N).
  * N = 8: It
    has been conjectured that the 4D theory may provide a suitable framework for a
    Theory of Everything, if its composite SU(8) gauge
 fields become dynamical.
  * N > 8:
    Phenomenology no good; Higher spins (> 2) and more than 1 graviton.
  @ N = 1:
    Chee GRG(98),
    Fülöp CQG(94)gq/93  [self-dual and anti-self-dual];
    Page ht/93 [inconsistency];
    Bagger et al NPB(01)ht/00 [4D, Einstein-frame quantum inconsistency];
    Ling  & Smolin PRD(01)ht/00 [holographic];
    Eder a2010 [as a super Cartan geometry];
    Cianciara et al a2012 [4D, 300 correlators];
    Ducrocq et al MPLA(21)-a2104 [4D, superspace approach, intro].
  @ N = 2:
    Ferrara & van Nieuwenhuizen PRL(76);
    Anastasiou et al NPB(18)-a1707 [classification].
  @ N = 8:
    Cremmer & Julia NPB(79);
    Kallosh PLB(81),
    Howe et al NPB(81)
      [existence of counterterms compatible with N = 8 supersymmetry];
    De Wit & Nicolai NPB(82) [gauged version];
    Bern et al PLB(07),
    PRL(09)
    + Nicolai Phy(09) [UV finiteness],
    PRL(07) [perturbative finiteness],
    a0902-ln;
    Drummond et al PRD(09)-a0901 [tree-level amplitudes];
    Kallosh JHEP(10)-a1009 [ultraviolet finiteness];
    Ferrara & Marrani a1106-proc [rev];
    Dall'Agata & Zwirner JHEP(12)-a1205 [spontaneously broken, 1-loop effective potential].
  @ N > 8: Nicolai & Samtleben NPB(98)ht [2D, N = 16];
    Nishino  & Gates CQG(00)ht/99 [type IIA*].
  @ Broken supergravity and super-Higgs:
    Deser & Zumino PRL(77);
    Cremmer et al PLB(79).
  @ Conformal supergravity:
    Fradkin & Tseytlin PRP(85);
    Lindström & Roček PRL(89);
    Chee & Jia GRG(01)gq/00 [Ashtekar variables].
  @ Self-dual supergravity:
    Devchand & Ogievetsky NPB(95);
    Rosales-Quintero IJMPA(16)-a1505 [pure-connection  formulation].
  @ 11-dimensional: Deser ht/98-conf;
    Ling & Smolin NPB(01)ht/00 [as constrained topological field theory];
    Miemiec & Schnakenburg FdP(06)ht/05 [rev];
    Cederwall JHEP(10)-a0912 [manifestly supersymmetric action];
    Figueroa-O'Farrill & Santi JPA(16)-a1511 [Lie-algebraic derivation];
    > s.a. kaluza-klein theory.
  @ Higher-order: Hurth et al PRD(97);
    Ketov AIP(10)-a0910,
    Liu et al JHEP(12)-a1201,
    Diamandis et al PRD(15)-a1509 [f(R)].
  @ Topologically massive:
    Deser & Kay PLB(83);
    Gibbons et al CQG(08)-a0807 [solutions with one Killing spinor];
    Routh PRD(13)-a1301 [Hamiltonian form].
  @ MacDowell-Mansouri theory: García-Compeán et al PRD(99)ht/98 [dual];
    Obregón et al PRD(12) [Immirzi parameter and θ ambiguity].
  @ Other variants:
    Duff et al PRP(86) [Kaluza-Klein version];
    Chandía et al AIP(99)ht  [Chern-Simons version];
    Julia & Silva JHEP(00)ht/99 [first-order];
    Djeghloul & Tahiri MPLA(00)ht/02 [quantum action];
    Binétruy et al PRP(01) [couplings];
    Salgado et al PRD(02)gq/01 [Poincaré invariant 4D];
    Allen ht/03-proc [Lorentz-violating];
    van Nieuwenhuizen ht/04-proc [simple model];
    Celi et al PRD(05)ht/04 [fake supergravity];
    Giacomini et al CQG(07)ht/06 [3D];
    Günaydin et al NPB(11) [magical supergravities in 6D];
    Gallerati & Trigiante in(06)-a1809 [extended];
    Baguet & Samtleben JHEP(16)-a1607
      [E8(8) exceptional field theory].
  > And other gravity theories:
    see 2D gravity and 2D quantum gravity;
    3D gravity; Gauge Gravity;
    non-commutative and non-local gravity;
    unimodular gravity.
Solutions and Phenomenology
  > s.a. early-universe cosmology [no-scale supergravity].
  @ Solutions: 
    Gauntlett et al CQG(03) [5D];
    Gutowski et al CQG(03) [6D];
    > s.a. black holes and black-hole uniqueness
      and black-hole geometry [inequalities]; general-relativity
      solutions; gödel spacetime; instantons;
      monopoles; solitons;
      topological defects;  wormholes.
  @ And spacetime symmetries: Vandyck GRG(88),
    GRG(88),
    GRG(89),
    GRG(90),
    GRG(93);
    > s.a. symmetry.
  @ FLRW cosmology: Bertolami & Schiappa CQG(99)gq/98 [N = 1];
    Tkach et al CQG(99) [with complex scalar field];
    Koehn et al PRD(14)-a1310 [non-singular bounce].
  @ Other cosmology: Kallosh ht/02-conf [rev];
    Ferrara et al IJMPA(16)-a1605-proc [and inflation];
    > s.a. AdS; bianchi I
      and bianchi IX models; cosmology [future];
      inflationary scenarios; quintessence.
  @ Quantization, perturbative:
    Bern et al PRD(08) [possible UV finiteness];
    Modesto a1206
      [non-local, power-counting super-renormalizable and tree-level unitary theory];
    Garousi PRD(13)-a1303 [Riemann curvature corrections].
  @ Related topics:
    Ferrara et al NPB(76) [matter couplings];
    de Wit & van Zalk GRG(09) [and M-theory];
    > s.a. positive-energy theorems.
  > And  particle physics: see grand unified theories;
    particle types [gravitino]; string phenomenology.
  > Other phenomenology: see branes;
    supersymmetry phenomenology; topology in physics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 15 apr 2021