|  Positive-Energy Theorem | 
In General > s.a. energy conditions.
  * Idea: If Σ is an
    asymptotically flat non-singular spacelike hypersurface, and the dominant
    energy condition is satisfied, then the total energy-momentum p
    is a future-directed timelike or null vector; Furthermore, p = 0
    iff the spacetime is flat in a neighborhood of Σ.
  * Motivation:
    Originally the motivation for a positive-energy theorem came from the
    Newtonian physics observation that only positive masses are seen; A result
    of this type is also required by the stability of the theory; Otherwise,
    for example, in thermodynamics one could get a perpetual motion machine
    by pumping energy out of a black hole (? : Nester).
  * Rem: We do not have
    positive-energy theorems for spacetimes with a positive cosmological constant.
  > Online resources:
    see Wikipedia page.
References > s.a. asymptotic flatness at null infinity
  [positivity of the Trautman-Bondi mass]; Penrose Inequality.
  @ Introductions and reviews: Dain in(14)-a1302;
    Zhang IJMPA(15)-a1508-proc [spacetimes with non-zero cosmological constant].
  @ Conjecture: Geroch in(78);
    Geroch & Horowitz AP(79);
    Brill & Jang in(80).
  @ Schoen & Yau proof:
    Schoen & Yau CMP(79),
    PRL(79),
    CMP(81),
    CMP(81);
    Choquet-Bruhat in(83).
  @ Witten proof: Witten CMP(81);
    Nester PLA(81);
    Parker & Taubes CMP(82);
    Reula JMP(82);
    Bizoń & Malec CQG(86);
    Dimakis & Müller-Hoissen CQG(90).
  @ Other proofs:
    Grisaru PLB(78);
    Kijowski in(86);
    Jezierski & Kijowski PRD(87);
    Nester PLA(89);
    Bergqvist CQG(92);
    Penrose et al gq/93;
    Nester et al CQG(94),
    Nester & Tung PRD(94)gq;
    Pelykh JMP(00) [equivalence Witten-Nester];
    Chruściel & Galloway CQG(04)gq [and Lorentzian splitting theorem];
    Chee et al PRD(05)gq [spinorial variables];
    Sarıoğlu & Tekin a0709 [using asymptotic symmetries];
    Bäckdahl & Valiente Kroon CQG(11) [invarianrt deviation from Minkowski space, approximate twistors];
    Jezierski & Waluk BCP(16)-a1508 [using spacetime foliations].
  @ Proofs for special cases: Jang JMP(76) [flat initial hypersurface],
    JMP(78);
    Chruściel CQG(04)gq [using null rigidity];
    a1010
      [Riemannian, manifolds that are graphs of smooth functions];
    Grant & Tassotti a1205,
      a1408 [low-regularity metrics];
    Chruściel & Paetz CQG(14)
    & CQG+
      [positivity of the Trautman-Bondi mass for spacetimes containing complete smooth light cones, elementary proof];
    Shyam a1408-wd
      [maximally sliced, asymptotically flat spacetimes].
  @ Related topics:
    Jang & Wald JMP(77) [and cosmic censorship];
    Bekenstein PRD(13)-a1310 [why is mass always positive, if vacuum energy can be negative?];
    Carlotto et al IM(16)-a1503 [effective versions].
Extensions
  > s.a. de sitter spacetime [asymptotically de Sitter];
  energy [asymptotically FLRW spacetimes]; quasilocal
  energy; teleparallel.
  @ For black holes:
    Gibbons, Hawking, Horowitz & Perry CMP(83);
    Herzlich JGP(98);
    Rogatko CQG(00) [in Einstein-Maxwell-dilaton].
  @ Spacetimes with horizons and couplings: Finster et al JMP(00)gq;
    Khuri & Weinstein JMP(13) [charged Dirac fields].
  @ Asymptotically (locally) AdS spacetimes: Page et al PRL(02)ht [from boundary causality];
    Cheng & Skenderis JHEP(05)ht;
    Luo et al NPB(10).
  @ Higher dimensions:
    Witten NPB(82) [no, instability];
    Lee & Sorkin CMP(88) [5D Kaluza-Klein theory];
    Zhang JMP(99) [5D version of Witten's proof];
    Ding JMP(08);
    Choquet-Bruhat a1107 [arbitrary space dimension];
    Shiromizu & Soligon a2007 [d+1 dimensional Kaluza-Klein];
    Cameron a2010 [Penrose et al proof];
    Nguyen a2102 [explicit negative-mass solutions].
  @ 2+1 dimensions: Ashtekar & Varadarajan PRD(94)gq [and upper bound on energy];
    Menotti & Seminara AP(95);
    Wong a1202;
    Barnich & Oblak CQG(14)-a1403 [holographic].
  @ Manifolds with corners: Miao ATMP(02)mp;
    McFeron & Székelyhidi CMP(12).
  @ Lower bounds, Bogomolny-type inequalities:
    Gibbons & Hull PLB(82);
    Gibbons & Wells gq/93,
    Gibbons CQG(99)ht/98 [asymptotically AdS, black holes].
  @ Quantum version: Thiemann CQG(98)gq/97;
    Smolin PRD(14)-a1406.
  @ Other theories: Rogatko CQG(02) [Einstein-Maxwell-axion-dilaton];
    Deser CQG(09)-a0907 [topologically massive gravity];
    Garfinkle & Jacobson PRL(11)-a1108 [Einstein-aether and Hořava gravity];
    Nozawa & Shiromizu NPB(14)-a1407 [extended supergravities];
    > s.a. hořava gravity.
  @ Conformal: Simon LMP(99)gq/00;
    Tam & Wang a1607 [on asymptotically hyperbolic manifolds].
  @ Manifolds with boundary: Kim DG&A(04) [with inner boundary];
    Bryden et al JMP(19)-a1806 [in terms of angular momentum and charge];
    Hirsch & Miao PJM-a1812;
    Almaraz et al a1907 [initial data sets with non-compact  boundary];
    Galloway & Lee a2105.
  @ Related topics:
    Chruściel CQG(86);
    Yip CMP(87);
    Zhang & Zhang CMP(00) [time symmetric];
    Zhang et al PRD(05) [with angular momentum contribution];
    Okikiolu CMP(09) [negative-mass theorem for surfaces of positive genus];
    Lee & LeFloch a1408,
    Shibuya a1803
      [manifolds with distributional curvature].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021