|  Gödel Solution | 
In General
  > s.a. relativistic cosmological models / causality;
  particle models; quantum field theory in curved spacetime.
  * Idea: A set of rotating cosmological
    solutions of Einstein's equation with pressure-free perfect fluid matter on an \(\mathbb R^4\)
    manifold which shattered some preconceived ideas, since the local definition of inertial frame
    disagrees with the global one; It violates causality and is not time-orientable.
  * Remark: A generalized form, actually
    described originally by Gödel, is a family of metrics with isometry group SO(2,1)
    × SO(2) × \(\mathbb R\).
  * Properties: Each spacetime has a 5-parameter
    group of isometries which acts transitively, and there are closed timelike curves through
    all points; Any two points can be joined by a timelike curve; There are no non-empty
    achronal sets.
  * Metric: Constructed from Maurer-Cartan
    forms of a suitable Lie group,
ds2 = −dt2 + dx2 − \(1\over2\) exp{2\(\sqrt2\) ωx} dy2 + dz2 − 2 exp{\(\sqrt2\) ωx} dt dy (partial) ,
with fluid 4-velocity u = ∂/∂t; ω = const = magnitude of vorticity of ua, 4πρ = ω2.
References
  @ General: Gödel RMP(49)
    + GRG(00),
    in(52) + GRG(00);
    Kundt ZP(56);
    in Hawking & Ellis 73, 168–170;
    Bonnor et al CQG(98)gq/97 [exterior];
    Németi et al a0811 [visualization];
    Rindler in(09) + AJP(09)jun;
    Buser et al NJP(13)-a1303 [visualization];
    Herrera et al PRD(13)-a1304 [physical meaning of the vorticity of the matter content];
    Deszcz et al IJGMP(14) [curvature properties].
  @ Energy and momentum: Dabrowski & Garecki CQG(02)gq/01,
    PRD(04)gq/03;
    Sharif IJMPA(03).
  @ Closed timelike curves: Gleiser et al CQG(06)gq/05;
    Rosa & Letelier GRG(07)gq [stability];
    Pfarr FP(10);
    Natário GRG(12)-a1105 [optimal time travel];
    Nolan a1911 [causality violation without time-travel].
  @ Light cones, causality: Pfarr GRG(81);
    Malament JMP(87);
    Ozsváth & Schucking AJP(03)aug;
    Dautcourt & Abdel-Megied CQG(06)gq/05.
  @ Related topics:
    Saha & Chowdhury PS(00) [geodesic deviation];
    Barrow & Tsagas CQG(04)gq/03 [stability];
    Aydogdu & Salti gq/05-wd [spin-1 particle creation];
    Sahdev et al gq/06 ['travel guide' and sketches];
    Marecki gq/07-ch [wave equation];
    Grave et al PRD(09) [geodesic motion, visualization];
    Bartolo et al DG&A(11) [geodesic connectedness];
    Pitanga a1201 [boundary, and the chronology protection conjecture];
    > s.a. diffusion.
Similar Solutions and Other Theories > s.a. black
  holes in modified theories [5D Schwarzschild-Gödel]; brane world.
  @ 2+1:
    Harriott & Williams GRG(01) [pfluid, with kink];
    Sousa et al CQG(08)-a0705 [classification and properties];
    Gürses GRG(10)-a0812;
    Brooks et al a1506 [classification, Cartan-Karlhede algorithm].
  @ 5D:  Rebouças & Teixeira JMP(98);
    Behrndt & Pössel PLB(04)ht/03 [supergravity, Λ < 0].
  @ Variations:
    Romano & Goebel GRG(03) [with electromagnetic field];
    Dryuma gq/05 [Riemann extension];
    Dautcourt CQG(10)-a1009 [Gödel-like spacetimes, light cone];
    Rendall JGP(11)-a1011 [topologically twisted];
    > s.a. kerr-newman spacetime.
  @ Chern-Simons-modified gravity: Konno et al PRD(08);
    Furtado et al PRD(09)-a0906,
    IJMPcs(12)-a1203;
    > s.a. higher-order theories.
  @ Higher-order theories: Rebouças & Santos PRD(09)-a0906,
    Santos et al PRD(10)-a1004 [f(R) gravity];
    Santos MPLA(13)-a1308 [f(R, T) gravity].
  @ Other theories: Åman et al CQG(98)gq/97,
    Fonseca-Neto & Rebouças GRG(98)gq [Riemann-Cartan];
    Barrow & Dabrowski PRD(98) [low-energy string theory];
    Ozsváth & Schücking CQG(01) [newtonian analog];
    Caldarelli & Klemm CQG(04)ht/03 [4D, supersymmetric];
    Gürses et al CQG(05)ht/03,
    & Sarioglu CQG(05)ht [various dimensions];
    Obukhov & Vargas PLA(04)gq [teleparallel gravity];
    Gürses GRG(09)-a0801,
    & Şentürk GRG(16)-a1512 [Einstein-Æther theory];
    Furtado et al PRD(11)-a1106 [in Hořava-Lifshitz gravity];
    Furtado et al a1109 [in æther-modified gravity];
    Ulhoa et al GRG(15)-a1503 [non-commutative corrections];
    Agudelo et al PLB(16)-a1603 [in Brans-Dicke theory].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 nov 2019