|  Solutions of Einstein's Equation | 
In General > s.a. asymptotic flatness; generating
  methods; initial-value formulation [existence, stability].
  * History: Up to the 1970s,
    very few exact solutions were known; Now the field has become very rich.
  @ General references: Jordan et al AWL(60),
    re GRG(09);
    Hoenselaers & Dietz ed-84;
    Bonnor GRG(82);
    Xanthopoulos in(85);
    MacCallum in(88);
    Rendall LRR(98)-LRR(00)-LRR(02)-LRR(05) [existence];
    Bičák LNP(00)gq-in;
    Schmidt ed-00;
    Pollney et al CQG(00),
    CQG(00),
    CQG(00) [computer database];
    Ishak & Lake CQG(02)gq/01 [online database];
    Ehlers GRG(06) [remarks];
    Isenberg a1610-in
      [modeling astrophysical events and cosmology, solutions in which determinism and causal relationships break down];
    Podolský CQG+(18);
    Etesi a1903 [solvability result].
  @ Books, reviews: Bourguignon 80 [mathematical];
    Islam 85;
    Stephani et al 04;
    Chruściel gq/04-GR17;
    Friedrich AdP(06)gq/05-in;
    MacCallum AIP(06)gq [methods, applications];
    Bičák in(06)gq;
    Senovilla CQG(08)-a0710-GR18;
    Müller & Grave a0904 [Catalogue of Spacetimes];
    Griffiths & Podolský 09;
    Barrow 11.
  @ Interpretation: Bonnor GRG(92),
    et al GRG(94);
    Bičák gq/02-GR16.
  > Online resources:
    see Differential Geometry Library
      page;
    Maple blog(15)oct.
Types of Solutions
  > s.a. einstein's equation; types of metrics [degenerate]
  and spacetimes; with matter [including cosmological constant].
  * Universal metrics: Solutions of the
    vacuum field equations for general relativity and all higher-order theories of gravity.
  @ General references: Chruściel 91 [uniqueness].
  @ Universal metrics: Hervik et al CQG(15)-a1503 [type II];
    Gürses et al CQG(17)-a1603 [Kerr-Schild-Kundt metrics];
    Hervik et al JHEP(17)-a1707 [4D].
  @ Non-trivial topology: Isenberg AP(80);
    Harriott & Williams JMP(88),
    IJTP(89);
    > s.a. geons [including kinks].
  @ Approximate: Bel GRG(87);
    Garriga & Verdaguer GRG(88);
    Ellis in(93);
    Detweiler PRD(94)gq/93 [binaries],
    & Brown PRD(97)gq/96 [post-Minkowski expansion];
    Manko & Ruiz CQG(04)gq [stationary axisymmetric];
    Adler & Overduin GRG(05) [approximately flat];
    Reiterer & Trubowitz a2005 [formal power series];
    > s.a. gravitating matter.
  @ Inhomogeneous: MacCallum in(79);
    Feinstein et al CQG(95).
  @ No symmetries: Robinson & Robinson IJTP(69);
    Koutras & McIntosh CQG(96);
    Sussman & Triginer CQG(99)gq/98.
  @ With defects: Edelen IJTP(94);
    Letelier & Wang JMP(95);
    > s.a. solutions with matter [distributional].
  @ Other: Hayward CQG(93) [on a null 3-surface];
    Puszkarz gq/97 [dipole];
    Katanaev et al AP(99) [warped products];
    Lewandowski CQG(00)gq/99 [with isolated horizons];
    Robinson GRG(02) [holomorphic];
    Headrick & Wiseman CQG(05)ht [on Calabi-Yau manifolds];
    Klainerman & Rodnianski AM(05) [rough];
    Kong et al ScCh(10)-a0807 [time-periodic];
    Cropp MS-a1108.
  > Related concepts: see embeddings;
    horizons; petrov classification [algebraically special];
    quantum gravity [corrections]; torsion in physical theories.
  > Vacuum solutions: see Goldberg-Sachs
    Theorem; gravitational-wave solutions [including impulsive, weakly regular solutions];
    Minkowski space.
  > Black holes and collapsing solutions:
    see black holes; Vaidya Metric;
    Lemaître-Tolman-Bondi Solutions;
    Wahlquist Metric.
  > Other types: see relativistic
    cosmology; self-dual solutions; solutions with symmetries.
  > In other theories:
    see 3D general relativity; 3D gravity;
    higher-order gravity; kaluza-klein theory.
Space of Solutions > s.a. generating methods;
  perturbations [stability]; space of
  lorentzian metrics and riemannian metrics.
  * Smoothness: In the globally hyperbolic
    spatially compact case it is a smooth manifold near g iff g has no Killing
    vector fields; If g has a k-dimensional space of Killing vector fields and
    a compact Cauchy surface of constant mean curvature, then it has a conical singularity.
  * Isolated solutions:
    There is no isolated solution in the space of Lorentzian metrics on a manifold M
    [@ Lerner CMP(73)].
  @ General references: Lerner CMP(73);
    Fischer et al in(80); in Marsden 81;
    Isenberg & Marsden PRP(82);
    Andersson JGP(87) [action of diffeomorphisms];
    Isenberg PRL(87);
    Saraykar JMP(88).
  @ With symmetries: Fischer et al AIHP(80);
    Arms et al AP(82);
    Chruściel AP(90) [U(1) × U(1)];
    McIntosh & Arianrhod GRG(90).
  @ Conformal symmetries: Eardley et al CMP(86);
    Garfinkle JMP(87);
    Garfinkle  & Tian CQG(87).
  @ Related topics:
    Moncrief JGP(84) [generalized Taub-NUT];
    Kriele gq/96 [with signature change];
    Anderson JMP(03)gq/02 [curvature bounds].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 9 may 2020