|  Types of Inflationary Scenarios | 
In General
  > s.a. cosmological models [variants and alternatives to inflation];
  general-relativistic cosmology; quintessence.
  * Types of fields: Conformally coupled
    fields tend not to drive inflation; A cosmological constant does drive (exponential) inflation.
  * GUT-era inflation:
    The first type of scenario; Inflation occurs because of a symmetry breaking
    phase transition related to a Higgs field; In the original proposal, the universe
    cools down to a false (metastable) vacuum, from which it eventually tunnels out;
    In the new inflation, the effective potential for the Higgs field is very flat near
    the old vacuum, and inflation occurs not because the universe is stuck in a
    false vacuum, but because it spends time rolling down the potential.
  @ Reviews: Kolb PRP(93);
    Linde JPCS(05)ht [including string cosmology];
    Mukhanov ap/05;
    Baumann & McAllister 15-a1404 [and string theory].
  @ General references:
    Lyth & Riotto PRP(99);
    Linde JCAP(03)ap-in [closed, Ω > 1];
    Weinberg PRD(10)-a0911 [in asymptotically safe theories of gravity];
    Martin et al PRD(11)-a1009 [Bayesian evidence for the best model];
    Maleknejad et al PRP(13)-a1212 [role of gauge fields];
    Martin et al PDU-a1303 [comparison of predictions];
    Martin et al JCAP(14)-a1312,
    Martin a1312-conf [ranking of scenarios based on Planck data];
    Baumann et al JCAP(15)-a1407 [using B-modes];
    Pieroni a1611-PhD [classification of inflationary models];
    Gomes et al PRD(18)-a1803.
  @ Original models: Guth PRD(81);
    Linde PLB(82),
    Albrecht & Steinhardt PRL(82) [new inflation].
Double Inflation
  * Motivation:
    Was introduced to decouple large and small-scale density perturbations.
  @ References: Silk & Turner PRD(87);
    Parkinson et al PRD(05) [testing with WMAP].
Eternal Inflation
  > s.a. inflation [and no-boundary wave function]; multiverse.
  * Idea: The term describes
    a number of different scenarios, classified by Winitzki; The usual one
    predicts that the observable universe is inside a bubble embedded in a vast
    multiverse, most of which is still undergoing super-accelerated expansion,
    a de Sitter background in which pocket universes nucleate at a steady rate.
  @ References:
    Vilenkin PRD(92) [need for a beginning];
    Borde & Vilenkin PRL(94) [initial singularity];
    Garriga et al PRD(99)ap/98,
    Vilenkin IJTP(99)ht/98 [open universes and anthropic principle];
    Guth in(01)ap/03;
    Bousso et al PRD(06)ht;
    Mersini-Houghton & Parker a0705 ["expensive"];
    Winitzki 08;
    Aguirre & Johnson RPP(11)-a0908 [observability of bubble collisions];
    Ellis & Stoeger GRG(09)-a1001;
    Sekino et al PRD(10)-a1003 [topological phases];
    Linde & Noorbala JCAP(10)-a1006 [probability measures];
    Feeney et al PRL(11)-a1012,
    PRD(11)-a1012
    + news ns(10)dec,
    bbc(11)aug [cmb observational test of bubble collisions];
    Johnson & Lehners PRD(12) [cyclic bubble universes];
    Susskind a1205 [is the multiverse  past-eternal?];
    Mersini-Houghton & Perry CQG-a1211 [not eternal];
    Brandenberger et al PRD(15)-a1504 [back-reaction of long-wavelength fluctuations, and termination].
(Hyper)Extended Inflation
  * Idea: Assume that
    G is variable to get a graceful exit without fine tuning.
  @ Extended: La et al PLB(89);
    La & Steinhardt PRL(89);
    Laycock & Liddle PRD(94).
  @ Hyper-extended: Kolb et al PRD(90);
    Steinhardt & Accetta PRL(90);
    Liddle & Wands PRD(92);
    Crittenden & Steinhardt PLB(92).
Chaotic Inflation > s.a. boundary
    conditions in quantum cosmology; phenomenology.
  * Idea: Use an extra scalar field
    φ, and get inflation only in the regions where φ starts at
    a large V(φ); Because of the large effective friction, φ
    evolves slowly at first, then faster; Disadvantage: One also gets a cosmological constant,
    Vmin = Λeff.
  @ References: Linde PLB(88);
    Linde & Zelnikov PLB(88) [baby universes with fluctuating dimension];
    Khalfin IJTP(89) [against];
    Susperregi PLB(98) [potentials];
    Vilenkin gq/04 [vs eternal, terminology];
    Bertolami & Duvvuri PLB(06) [and Chaplygin gas];
    Kaloper & Sorbo PRL(09)-a0811;
    De Felice et al JCAP(11) [in modified gravitational theories];
    Enqvist et al JCAP(12)-a1107 [in non-metric gravity];
    Bachlechner et al PRD(15)-a1404.
Other Models
  > s.a. (A)dS-cft; inflation [issues];
  inflation and planck-scale physics [and quantum gravity];
  quantum-gravity phenomenology.
  * Starobinski model: A model developed as
    a cosmology without singularity in the 1980s, usingan action with leading Einstein term
    R, a quantum-gravity motivated R2
    term with a huge coefficient, and negligible higher-order terms.
  * Warm inflation: A picture that takes
    into account the importance of dissipation and fluctuation to inflationary dynamics.
  @ Non-minimal couplings: Faraoni PRD(00)gq,
    IJTP(01)ht/00-conf;
    Pallis PLB(10).
  @ Hybrid inflation: Linde PRD(94);
    Lazarides IJMPA(07)-a0706-proc [followed by modular inflation].
  @ Warm inflation: Bellini CQG(99)gq,
    CQG(00)gq/99;
    Berera CP(06) [rev].
  @ Assisted inflation, multiple scalars:
    Liddle et al PRD(98);
    Copeland et al PRD(99)ap;
    Kanti & Olive PLB(99),
    PRD(99) [5D];
    Aguirregabiria et al GRG(02)gq/01 [Bianchi VI0];
    Wands et al PRD(02)ap [2-field];
    Kim & Liddle PRD(06)ap [Nflation, numerical];
    Hartong et al CQG(06);
    Peterson & Tegmark a1111 [geometric approach to tests];
    > s.a. Curvaton.
  @ Inflaton potential:
    Lidsey et al RMP(97) [rev];
    Easther & Kinney PRD(03)ap/02 [Monte Carlo reconstruction];
    Grozdanov et al NPB(16)-a1508 [from the exact renormalisation group].
  @ Without big bang:
    Goldwirth & Piran GRG(91);
    Durrer & Laukenmann CQG(96);
    Minkevich gq/03,
    NPCS(03)gq.
  @ In Bianchi models:
    Cervantes-Cota CQG(99) [V, Brans-Dicke];
    Aguirregabiria et al PRD(00)gq,
    GRG(02)gq/01 [assisted],
    CQG(04) [I, braneworld];
    Chakraborty & Paul PRD(01) [with scalar, no-hair];
    Paul PRD(02)gq [brane world];
    > s.a. bianchi IX models.
  @ Stochastic: Matacz PRD(97);
    Tsamis & Woodard NPB(05) [quantum gravitational];
    Tolley & Wyman JCAP(08)-a0801;
    Kohli & Haslam CQG(15)-a1408 [and general relativity];
    Pinol et al a1806 [critical look];
    Pattison et al a1905 [beyond slow roll].
  @ Natural inflation:
    Freese et al PRL(90);
    Freese & Kinney PRD(04)hp;
    Freese & Kinney JCAP(15)-a1403 [and Planck and BICEP2 data].
  @ From instantons: Linde PRD(99)hp/98 [Coleman-de Luccia instanton in single-field toy model];
    > s.a. inflation and planck-scale physics [quantum cosmology].
  @ Spinor-driven: Böhmer PRD(08)-a0804 [dark spinor];
    Barenboim JHEP(09)-a0811 [right-handed neutrino condensate];
    Shankaranarayanan IJMPD(09)-a0905-GRF [spinor condensate],
    a1002-MG12 [dark spinor].
  @ Higgs inflation: Bezrukov CQG(13);
    Cook et al PRD(14)-a1403,
    Hamada et al PRL(14)-a1403 [and BICEP2 results]
  @ Other models:
    Damour & Mukhanov PRL(98) [without slow roll];
    Borde et al PRL(03)gq/01  [past];
    Sami G&C(02) [with oscillations];
    Kaloper PLB(04)hp/03 [disformal];
    Arkani-Hamed et al JCAP(04)ht/03 [ghost];
    González-Díaz & Jiménez-Madrid PLB(04) [phantom, and "big trip"];
    Copeland & Rajantie JCAP(05)ap [locked inflation, end];
    Boubekeur & Lyth JCAP(05)hp [hilltop inflation];
    Barenboim & Lykken PLB(06)ap/05 ["slinky", and dark energy];
    Watson et al JCAP(07)ht/06 [without inflaton fields];
    Golovnev et al JCAP(08)-a0802
    + pw(08)feb [vector-driven inflation];
    Barnaby CJP(09)-a0811-proc [non-local fields];
    Biswas & Alexander PRD(09)-a0812 [cyclic];
    Germani & Kehagias AIP(10)-a0911 [non-conventional scalar field];
    Afshordi et al JCAP(11)-a1006 [with spherical underdense or overdense regions];
    Cline et al JCAP(11)-a1106 [chain inflation];
    Asselmeyer-Maluga & Król a1301,
    AHEP-a1401 [geometric, from exotic smoothness];
    Gwyn & Lehners JHEP(14) [supergravity and non-canonical kinetic terms];
    Mukhanov FdP(15)-a1409 [extension without self-reproduction];
    Fertig et al JCAP(16)-a1507 [conflation, in scalar-tensor theories];
    Asaka et al PTEP(16)-a1507 [Starobinski model, from higher dimensions];
    > s.a. quantum phase transitions [QCD]; finsler
      spacetimes; unimodular gravity; weyl unified theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 may 2019