|  3-Dimensional Quantum Gravity | 
Based on General Relativity
  > s.a. 3D general relativity; connection representation;
  quantum gravity; regge calculus and dynamical
  triangulations.
  * Remark: There are various different,
    classically equivalent actions, which may lead to inequivalent quantum theories.
  @ Books, reviews: Carlip 98;
    Carlip LRR(05)gq/04 [spatially closed];
    Carlip SA(12)apr.
  @ General references: Martinec PRD(84);
    Witten NPB(88);
    Nelson & Regge NPB(89),
    CMP(91),
    PLB(91),
    PRD(94)gq/93;
    Carlip PRD(92),
    gq/93-conf [Chern-Simons and other approaches];
    Carlip & Nelson PRD(95)gq/94 [comparison];
    Álvarez IJMPD(93)ht/92;
    Seriu PRD(97)gq/96 [partition function];
    Schroers m.QA/00 [euclidean];
    Basu a0902-wd [spatial topology];
    Catterall PoS-a1010
      [on a lattice, and twisted supersymmetric Yang-Mills theory];
    Hamber et al PRD(12)-a1207 [on a lattice, infrared structure];
    Chen et al CQG(14) [on non-orientable manifolds];
    Canepa & Schiavina a1905 [BV-BFV description].
  @ With negative cosmological constant: Moncrief & Nelson IJMPD(97)gq [constants of motion];
    Krasnov CQG(02)gq/01,
    CQG(02)ht/01,
    CQG(02)ht [black-hole creation etc];
    Yin a0710 [duality to extremal conformal field theory];
    Maloney & Witten JHEP(10)-a0712 [partition function, contribution from classical geometries];
    Kraus et al a2103
      [in a box, Dirichlet boundary conditions].
  @ BRST approach:
    González & Pullin PRD(90);
    Fülöp MPLA(92)gq.
  @ Observables: Carlip PRD(90) [in ADM and ISO(2,1) approaches];
    Nelson & Regge CMP(93);
    Nelson GRG(95)gq;
    Carbone et al CQG(02)gq/01,
    Pierri gq/02  [volume operator];
    Barrett IJMPA(03)gq/02-conf.
  @ Lorentzian: Ambjørn et al APPB(03)ht [asymmetric ABAB matrix model].
  @ Renormalizability / finiteness: Anselmi NPB(04)ht/03,
    NPB(04)ht/03 [coupled to conformal field theory];
    > s.a. renormalization.
  @ With Barbero-Immirzi-like parameter: Bonzom & Livine CQG(08)-a0801;
    Basu & Paul CQG(10)-a0909 [2-torus spatial sections];
    Barbosa et al CQG(12)-a1204 [partial gauge fixing and reduction to an SU(2) Chern-Simons theory]. 
  @ Related topics:
    Carlip PRD(93) [and operator ordering];
    Soleng PS(93) [as vacuum polarization];
    Barrett & Crane CQG(97)gq/96 [and topological state sums];
    Ambjørn et al JHEP(01)ht [and matrix model];
    > s.a. ads-cft; non-commutative gravity;
      Tensor Models; topology change
      and models.
With Matter
@ Coupled to point particles: Kabat & Ortiz PRD(94)ht/93;
    Matschull & Welling CQG(98)gq/97;
    Cantini & Menotti CQG(03) [functional approach];
    Krasnov CQG(07)ht/05 [group field theory approach].
@ With matter fields:
    Carlip & Gegenberg PRD(91) [topological matter];
    Pierri IJMPD(02)gq/01 [scalar, from Gowdy reduction];
    Barrett CQG(06)gq/05 [quantum field theory + quantum gravity];
    Freidel et al gq/05 [scalar];
    Freidel & Livine PRL(06)ht/05-proc [effective non-commutative quantum field theory];
    Oriti & Ryan CQG(06)gq [group field theory approach];
Husain & Ziprick PRD(15)-a1506 [with dust].
Path Integral > s.a. boundary conditions
  in quantum cosmology [Hartle-Hawking]; regge calculus.
  @ Euclidean:
    Carlip CQG(93) [sum over topologies],
    CQG(95)gq;
    Guadagnini & Tomassini PLB(94);
    Castro et al PRD(11)-a1103
      [including perturbative loop corrections and non-perturbative instanton corrections];
    Iizuka et al PRL(15)-a1504,
    Honda et al PRD(16)-a1510 [with Λ < 0].
  @ Lorentzian: Gamboa & Mendez NPB(01)ht/00
      [strong coupling, t = 4V];
    Ambjørn et al NPPS(02)hl [dynamically triangulated];
    Arias & Schaposnik IJMPA(11)-a1101 [self-dual].
Canonical, Metric Representation
  > s.a. approaches to quantum gravity, including path integrals.
  * Possible state: If
    κ is the mean curvature of a hypersurface Σ,
Ψ[geometry]:= N exp{−L−1 ∫Σ κ d2v} .
  @ General references:
    Hosoya & Nakao PTP(90);
    Visser PRD(90);
    Weitsman CMP(91);
    Carlip CQG(94)gq/93 [Wheeler-DeWitt equation];
    Waelbroeck PRD(94);
    Louko & Matschull CQG(01)gq [2 particles];
    Nelson gq/04-fs [ADM, and large diffeomorphisms].
  @ 2-torus topology: 
    Criscuolo et al gq/95-proc;
  Hájíček JMP(98)gq/97 [group-theoretic];
Specific Topics and Types of Metrics
  > s.a. approaches to quantum gravity [pilot-wave interpretation].
  @ Collapse: Ortíz & Ryan JPCS(07)gq,
    GRG(07) [dust];
    Vaz et al PRD(07)-a0710 [and Hawking radiation];
    Sarkar et al PRD(16)-a1602 [dust].
  @ Black holes:
    Bytsenko et al PRD(98) [entropy corrections];
    Vaz et al PRD(07) [collapse and radiation, Λ < 0];
    > s.a. 3D black holes.
  @ Other types of metrics: 
    Christodoulakis et al CQG(08)-a0806 [G1, with cosmological constant];
    > s.a. bianchi-I quantum cosmology.
  @ Singularities: Kenmoku et al IJMPD(03)gq/02 [conical];
    Minassian CQG(02)
      [BTZ and T2 topology];
    Raeymaekers JHEP(15)-a1412 [quantization of conical spaces].
Other Theories > s.a. 3D gravity
  and massive gravity; BRST transformations;
  higher-order theories; modified approaches;
  quantum gauge theory.
  @ Topological gravity: Bi & Gegenberg CQG(94)gq/93 [loop variables].
  @ Hořava-lifshitz gravity:
    Griffin et al JHEP(17)-a1701;
    Barvinsky et al PRL(17)-a1706 [asymptotic freedom].
  @ Related topics: Noui CQG(07)gq/06 [Riemannian, model].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 mar 2021