|  Renormalization: Application and Specific Types of Theories | 
In General
  > s.a. renormalization / lattice field theory;
  quantum systems; regge calculus [general relativity].
  @ Statistical mechanics:
    Fisher RMP(98) [scaling];
    Tauber NPPS(12)-a1112 [intro];
    Efrati et al RMP(14) [real space];
    > s.a. critical phenomena.
  @ Quantum mechanics:
    Manuel & Tarrach PLB(94);
    Polonyi AP(96);
    Gosselin & Mohrbach JPA(00);
    Birse a0709-conf [non-relativistic scattering];
    Radičević a1608;
    Paik a1707 [particle on a half-line].
  @ Cosmology: Iguchi et al PRD(98);
    Ibáñez & Jhingan IJTP(07)gq;
    Woodard PRL(08)-a0805 [cosmology is not a renormalization-group flow];
    > s.a. cosmological models.
  @ Fermions: Jakovác et al EPJC(15)-a1406 [non-Gaussian fixed points];
    > s.a. renormalization.
  @ Many-body systems: Requardt mp/03 [critical regime];
    Schwenk & Polonyi ed-12 [and effective field theory].
  @ Discrete models: Dorogovtsev PRE(03)cm [evolving networks];
    Requardt JMP(03) [discrete quantum spacetime];
    Gittsovich et al NJP(10)-a0908 [2D random-field Ising model];
    Yin JMP(11)-a1108 [Ising-type lattice spin systems];
    Yin PhyA(13) [1D Ising model, Markov-chain approach];
    Zinati & Codello JSM(18)-a1707 [Potts model];
    > s.a. hilbert space; networks;
      regge calculus; tensor networks.
  @ Theories at a Lifshitz point: Chen & Huang PLB(10)-a0904 [UV behavior];
    Iengo et al JHEP(09)-a0906 [one-loop renormalization].
  > Gravity-related
    theories: see covariant quantum gravity;
    gravitational constant [running];
    quantum-gravity renormalization.
  > Other types of theories:
    see gauge theories; quantum field
    theory in curved spacetime; stress-energy tensor;
    Thirring Model.
  > Related topics:
    see boundaries; Coarse-Graining;
    Coarse Structures in Geometry;
    path integrals; quantum field theory;
    renormalization group; sigma model.
  > Applications:
    see brownian motion; chaos;
    entanglement; phase transitions;
    probability theory.
Scalar Field Theories
  > s.a. inflationary models.
  * Renormalizability types:
    Covariant scalar field theory models are either super renormalizable, strictly
    renormalizable, or nonrenormalizable, but mixed models can be constructed.
  @ General references:
    Bouzas IJMPA(03) [many scalars + fermions];
    Stevenson NPB(05) [vs lattice Ising model];
    Gallavotti in(06)mp/05 [2D and 3D non-perturbative UV stability];
    Sonoda ht/05-conf [in E3];
    Casadio IJMPA(12)-a0806 [gravitational renormalization];
    Mohammedi a1306 [field redefinition and renormalizability];
    Litim & Trott PRD(18)-a1810 [asymptotic safety];
    Balakumar & Winstanley a1910 [Hadamard renormalization].
  @ φ^4 theory:
    Pinter AdP(01) [Epstein-Glaser approach];
    de Albuquerque ht/05 [with Robin boundary conditions];
    de Aragão & Carneiro PLA(06) [by scaling];
    Suslov ANM-a0911-conf
      [beta function, strong-coupling asymptotics];
    Adzhemyan & Kompaniets JPCS(14)-a1309 [numerical evaluation of critical exponents];
    Jack & Poole PRD(18)-a1806 [4D, renormalisation scheme invariants];
    Delcamp & Tilloy a2003 [using tensor networks];
    > s.a. non-renormalizable theories below.
  @ Other theories: Zanusso et al PLB(10)-a0904 [Yukawa and quartic, gravitational corrections];
    Klauder IJMPA(17)-a1605 [with mixed renormalizability properties];
    Juárez et al a2104 [two interacting scalar fields].
  @ In curved spacetime: Bonanno PRD(95)gq [Einstein universe];
    Hollands & Wald CMP(03)gq/02 [Klein-Gordon theory];
    Kopper & Müller CMP(07) [φ4 on Riemanian manifolds];
    Matsueda a1106;
    Markkanen & Tranberg JCAP(13)-a1303 [one-loop renormalization, simple method];
    Shapiro et al a1503
      [with non-minimal interaction, functional renormalization group].
Non-Renormalizable Theories, Asymptotic Safety
  * Idea: Some
    perturbatively non-renormalizable theories define interacting quantum
    field theories valid to arbitrarily high momentum scales because of the
    existence of a non-Gaussian fixed point (Weinberg's asymptotic safety);
    Examples are the 2 < D < 4 Gross-Neveu model, the
    non-linear σ-model, the sine-Gordon model and Einstein gravity.
  @ General references:
    Gegelia et al ht/95;
    Gomis & Weinberg NPB(96)ht/95;
    Blasi et al PRD(99) [mapped to renormalizable ones];
    Japaridze & Gegelia IJTP(00) [perturbative approach];
    Kazakov & Vartanov JPA(06),
    ht/06 [renormalizable expansions];
    Klauder AP(07)ht/06 [new approach];
    Klauder JPA(08)-a0805 [divergence-free],
    JPA(09)-a0811,
    a0904-in [approach];
    Sonoda a0909 [continuum limit];
    Dvali et al JHEP(11)-a1010 [UV completion by classicalization];
    Pittau FdP(15)-a1305 [predictivity],
    a1311-conf [FDR approach].
  @ Asymptotic safety: Nagy AP(14)-a1211-ln [and the functional renormalization group method];
    Rischke & Sannino PRD(15)-a1505 [thermodynamics];
    Intriligator & Sannino JHEP(15)-a1508 [in supersymmetric theories];
    Mann et al PRL(17)-a1707,
    Pelaggi et al PRD(18)-a1708 [asymptotically safe extensions of the Standard Model];
    Bond & Litim PRL(19)-a1801 [and non-abelian gauge interactions];
    Barducci et al JHEP(18)-a1807
      [UV completions of the Standard Model that don't work];
    > s.a. renormalization of gauge theories [QED].
  @ Gravity: Barvinsky et al PRD(93)gq [with a scalar field];
    > s.a.  asymptotic safety in quantum gravity.
  @ Other types of theories: Klauder LMP(03)ht/02
      [φ4n
      theories, n ≥ 4],
    JSP(04)ht/03
      [φp3,
      p = 8, 10, 12, ...];
    Anselmi JHEP(05)ht [class including all self-interacting scalars];
    Braun et al PRD(11)-a1011 [Gross-Neveu model];
    Cahill PRD(13)-a1303 [some are well-behaved];
    Litim & Sannino JHEP(14)-a1407
      [cooperation between non-abelian gauge fields, fermions and scalars];
    Polyakov et al TMP(19)-a1811 [quasi-renormalizable field theories].
Other Theories > s.a. Disorder.
  @ Non-commutative theories:
    Gayral et al PLB(05)ht/04 [possible trouble];
    Rivasseau et al CMP(06)ht/05 [φ4];
    Grosse & Steinacker NPB(06)ht/05 [φ3],
    ATMP(08)ht/06 [6D φ3];
    Grosse & Wohlgenannt JPCS(07)ht/06;
    Vignes-Tourneret PhD(06)mp;
    Rivasseau & Vignes-Tourneret ht/07-conf;
    Rivasseau in(07)-a0705 [rev];
    Gurău & Tanasă AHP(08)-a0706 [and dimensional regularization];
    Tanasă & Vignes-Tourneret JNCG(08)-a0707 [Hopf algebra structure];
    Gurău a0711-en
      [φ4*4];
    Gurău PhD(07)-a0802;
    Sfondrini & Koslowski IJMPA(11)-a1006 [scalar, functional renormalization];
    PRD(13)-a1207
      [φ4 scalar field on the Groenewold-Moyal plane];
    Blaschke FdP(14)-a1402-conf [renormalizable theories];
    > s.a. renormalization of gauge theories.
  @ Hamiltonian field theories: 
    Maslov & Shvedov ht/98-conf;
    Lieneger & Thiemann a2003 [free vector bosons].
  @ Group field theories:
    Carrozza PhD(13)-a1310,
    Sigma(16)-a1603;
    > s.a. renormalization of quantum gravity.
  @ Other types:
    Kraus & Griffiths AJP(92)nov;
    Bresser et al ht/99 [Lorentz-invariant renormalization];
    Pernici et al NPB(00) [Yukawa theories, dimensional];
    Yang JPA(09)-a0901 [effective theories, non-perturbative renormalization];
    Tu & Sanz PRB(10)-a1005 [quantum spin chains];
    Corichi & Vukašinac PRD(12)-a1202 [constrained theories, polymer approach];
    Cenatiempo & Giuliani JSP(14)-a1404 [2D Bose gas, critical point];
    Khavkine & Moretti CMP(16)-a1411
      [locally covariant theories, continuity and analyticity hypotheses are unnecessary];
    Green & Moffat a2012 [finite quantum field theory].
  @ Modified theories:
    Bezerra et al PRD(04) [deformed];
    Anselmi & Halat PRD(07) [Lorentz-violating];
    López & Mazzitelli PLB(09)-a0810,
    Mazzitelli IJMPD(11) [with modified dispersion relations];
    Sathiapalan IJMPA(13)-a1306 [closed string theory].
    > Online resources:
      see PI talks
      on Renormalization in Background Independent Theories.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 25 apr 2021