|  Renormalization of Quantum Gravity | 
In General
  > s.a. renormalization group [including holographic renormalization].
  @ General references: Christiansen et al PRD(16)-a1403 [global phase diagram];
    Falls a1702 [and asymptotic safety];
    de Alwis JHEP(18)-a1707 [exact RG flow];
    Doboszewski & Linnemann FP(18)-a1712 [how to formulate];
    Dhumuntarao a1807
      [renormalization group flow and stress-energy tensor as source for heat equation];
    Wiesendanger a1905 [renormalizability];
    Gustavsson a1911 [with boundaries and corners];
    Falls a2004 [manifestly background-independent approach].
  @ Ultraviolet behavior: Christiansen et al PRD(15)-a1506 [functional renormalisation group approach];
    > s.a. asymptotic safety.
  @ Effective G and cosmological constant:
    Parker gq/98/PRL [and cosmology];
    Reuter & Weyer PRD(04)gq/03 [improved action];
    Shapiro et al JCAP(05).
  @ Related topics: Smolin NPB(79) [and asymptotically scale-invariant geometry];
    Jacobson & Satz PRD(14)-a1308 [renormalization of the Gibbons-Hawking boundary term];
    Slovick MPLA(18)-a1309 [and symmetry of the functional measure];
    Gies et al PRD(15)-a1507 [parametrization dependence of the renormalization group flow];
    Solodukhin PLB(16)-a1509,
    Coumbe IJMPD(19)-a1804 [and metric redefinition];
    Morris SciPost(18)-a1806 [and diffeomorphism invariance];
    Ambjørn et al a2002 [without a fixed background geometry];
    Martini et al a2105 [universality class].
  @ Diffeomorphism-invariant Wilsonian (exact) renormalization group:
    Morris & Preston JHEP(16)-a1602;
    Preston a1612-PhD.
  > Related topics:
    see Confinement; effective theories;
    Immirzi Parameter; newton's gravitational
    constant [running]; spin networks.
Perturbative Renormalization > s.a. renormalization
  / gravitation; quantum gravity.
  * The non-renormalizability issue: The theory
    appears non-renormalizable (around gab
    = ηab) from power counting; This
    would not imply non-existence of quantum gravity, but by itself if quantum gravity was an
    ordinary theory it would be close to a kiss of death.
  * Argument for non-renormalizability:
    The coupling constant G has dimensions of squared length.
  * Proposed approaches: Study
    methods for handling non-renormalizable theories; Choose appropriate matter
    terms (> see supergravity); Euclideanize,
    study instantons and sum over manifolds; Include higher-derivative terms.
  @ General references:
    Deser RMP(57);
    't Hooft & Veltman AIHP(74);
    Deser in(75);
    Deser et al in(75);
    ·Weinberg
      in(79);
    Martellini PRL(83) [with cosmological constant];
    Goroff & Sagnotti NPB(86) [non-renormalizable ultraviolet divergences];
    Crane & Smolin NPB(86) [virtual black holes and fermions];
    Deser et al PLB(89);
    van de Ven NPB(92) [non-renormalizable infinity in the two-loop effective action];
    Shomer a0709 [pedagogical];
    Marin a1002 [reformulation of the theory];
    Morris JHEP(18)-a1802 [conformal sector];
    Morris a1805-GRF,
    Das et al IJMPD(18)-a1805-GRF [perturbatively renormalizable theory];
    Lavrov & Shapiro PRD(19)-a1902 [gauge-invariant];
    Kellett et al a2006 [continuum limit];
    > s.a. minisuperspace [and wormholes].
  @ With matter: Deser & van Nieuwenhuizen PRD(74) [Einstein-Maxwell theory],
    PRD(74) [Einstein-Dirac theory],
    et al PRD(74) [Einstein-Yang-Mills theory].
Non-Perturbative Renormalization
  > s.a. 3D quantum gravity; approaches to quantum
  gravity; canonical and covariant quantum gravity.
  * Idea: The usual non-renormalizability
    arguments are not reliable for a theory without a background metric; One needs to use
    different ones, and some arguments, both classical and quantum, point to the possibility
    that the theory, despite being non-renormalizable with the usual perturbative methods,
    is non-perturbatively renormalizable (although Witten claimed it is not, because the
    4D action is cubic),
  - Classical analog: The total
mc2 = m0c2 + e2/ε − Gm2/ε ,
    i.e., m = 2e G−1/2
    for ε → 0, independent of m0
    (nice for particles from geometry); This comes from the diffeomorphism invariance
    of the theory and the fact that therefore energy is expressed as a surface integral
    at infinity.
  - Examples from other theories:
    The 3D Gross-Neveu model; Gravity is exactly soluble in 3D, where can be written
    as a theory with quadratic action, where one perturbs around the zero triad
    [@ Witten NPB(88)].
  @ General references:
    Arnowitt et al PRL(60);
    in Ashtekar; Weinberg in(79);
    Smolin NPB(82);
    Crane & Smolin NPB(86);
    Kawai & Ninomiya NPB(90);
    Abe & Nakanishi MPLA(95);
    Maeda & Sakamoto PRD(96)ht [strong-coupling expansion];
    Hamada PTP(02)ht [higher-order renormalization];
    Kreimer AP(08)-a0705,
      in(09)-a0805 [from structure of Dyson-Schwinger equations];
    Percacci PoS-a0910;
    Hamber a1002-MG12;
    Knorr CQG(18)-a1710 [new approximation scheme].
Other Theories of Gravity 
  > s.a. 2D quantum gravity; higher-order
  gravity; modified theories [hořava gravity].
  @ General references:
    Haba ht/02 [Brans-Dicke theory];
    Nikolić a0708 [in linearized gravity];
    Freidel et al PRD(09)-a0905 [3D Boulatov model, group-field-theory approach];
    Narain & Percacci CQG(10)-a0911,
    Narain & Rahmede CQG(10)-a0911 [scalar-tensor theories];
    Pagani & Percacci CQG(15)-a1506 [with torsion and non-metricity];
    Finocchiaro & Oriti a2004 [group field theory];
    Bajardi et al Univ-a2105;
    > s.a. Topologically Massive Gravity.
  @ Gravity and coupled matter: Granda EPL(98)ht/05 [general relativity + N scalars, G and Λ],
    NCB(99)ht/05 [general relativity + N-spinor];
    Ibiapina Bevilaqua et al CQG(16)-a1506
      [Einstein gravity coupled to scalar electrodynamics, effective field theory];
    Ghodsi & Siahvoshan a2105 [with a scalar feld, d+1 dimensions].
  @ Discrete models:
    Requardt gq/02;
    Oeckl NPB(03)gq/02 [without background];
    > s.a. dynamical triangulations; lattice gravity;
      regge calculus; spin-foam models.
  @ Functional renormalization group: Benedetti & Caravelli JHEP(12)-a1204 [and local potential approximation];
    Donà & Percacci PRD(13)-a1209 [with fermions and tetrads];
    Nagy et al PRD(13)-a1307 [critical exponents];
    Reuter & Schollmeyer AP(16)-a1509 [on a theory space];
    Alkofer a1809-MS [with one extra compact dimension];
    Reuter & Saueressig 19;
    Barra et al a1910 [and gauge dependence].
  @ Related topics: Reuter & Saueressig PRD(02)ht/01,
    PRD(02)ht [non-local truncation of general relativity];
    Dienes & Mafi PRL(02) [compactification geometry];
    Bonanno & Reuter JHEP(05)ht/04 [comparison between renormalization group equations];
    Anselmi JHEP(07)ht/06 [semiclassical];
    Canfora PRD(06)ht [UV behavior at large N];
    Neugebohrn PhD(07)-a0704 [and effective actions];
    Narain & Percacci APPB-a0910-proc [beta function, scheme dependence];
    Donkin & Pawlowski a1203 [phase diagram of quantum gravity from diffeomorphism-invariant RG-flows].
  > Related topics: see cosmological
    constant [running]; general-relativistic cosmology [with
    varying G and Λ]; quantum gravity phenomenology.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021