|  Brownian Motion | 
In General > s.a. locality  [stochastic quantum mechanics];
  scattering [collisions]; stochastic processes
  [Wiener process].
  * History: 1827, Discovered by the
    biologist Robert Brown who was observing the motion of pollen grains in water; Provided
    the first indirect evidence for atoms (Gregory 88,
    p61); Theory anticipated by Louis Bachelier and developed by Einstein and Smoluchowski;
    1908, Used by Perrin to measure Avogadro's number, and confirm the existence of atoms.
  * Einstein-Smoluchowski theory: It
    can be defined by a stochastic differential equation, the Langevin equation.
  * Other descriptions:
    Use the Fokker-Planck equation, or a microscopic one [@ Uhlenbeck & Ornstein
    PR(30)].
  * Length of a track between two points:
    L = Cε−1, where
    ε is the scale used to measure it, and C a constant.
  * Short-time behavior: System-reservoir
    correlations are not negligible, and the dynamics is non-Markovian (non-Lindblad?).
  * Velocity distribution: Given an
    initial velocity v0,
    \[ \def\ee{{\rm e}}
    W({\bf v},t;{\bf v}_{_0}) = \left[{m\over2\pi kT(1-\ee^{-2\beta t})}\right]^{3/2}
    \exp\left\{-m\,{\big|{\bf v}-{\bf v}_{_0}\ee^{-\beta t}\big|\over2kT(1-\ee^{-2\beta t})}\right\}
    . \]
> Related topics: see fokker-planck equation; Langevin Equation.
Quantum > s.a. decoherence; entropy;
  fluctuations [fluctuation-dissipation theorem]; gas [Brownian gas];
  probabilities in physics.
  * Idea: Use the Fokker-Planck
    or diffusion equation, in terms of quasi-probability distribution (e.g., Wigner)
    functions.
  @ General references:
    Gaioli et al IJTP(97)qp/98,
    IJTP(99)qp/98;
    Kadomtsev & Kadomtsev PLA(97);
    Cohen JPA(98);
    Vacchini IJTP(04);
    Erdős et al mp/05-proc;
    Strunz NJP(05) [in terms of stochastic pure states];
    Ford & O'Connell PRA(06)qp [anomalous diffusion, colored noise];
    Tsekov IJTP(09)-a0711 [non-linear];
    Hörhammer & Büttner JSP(08) [information and entropy];
    Jacobs EPL(09)-a0807 [stochastic Schrödinger equation];
    De Roeck et al CMP(10)-a0810 [simple model];
    Paavola et al PRA(09)-a0902 [dissipative dynamics and environment];
    Tsekov AUS-a1001;
    Tejedor & Metzler JPA(10) [Gaussian waiting times];
    Helseth PLA(10) [observability];
    Erdős a1009-ln;
    Tsekov a2105-PhD.
  @ Specific systems: Kobryn et al JPSJ(03)mp/05 [fermions];
    Hänggi & Ingold APPB(06)qp [small systems, and third law];
    Hornberger PRL(06)qp [particle in a gas];
    Kim & Mahler EPJB(07)qp/06 [simple harmonic oscillator + bath, and second law].
  @ Non-Markovian effects:
    Hörhammer & Büttner JPA(08) [decoherence and disentanglement];
    Bolivar a1503-book [rev].
  @ Generalized: Banik et al PRE(02)qp;
    Rabei et al IJTP(06) [using fractional calculus];
    Eliazar & Shlesinger PRP(13) [and other fractional motions].
  @ Path integral, functional integral formulation:
    Caldeira & Leggett PhyA(83);
    Grabert et al PRP(88).
  @ Master equation: Calzetta et al IJTP(01)gq-proc;
    Halliwell JPA(07)qp/06 [two derivations];
    Abe & Rajagopal PhyA(07);
    Fleming et al a0705,
    AP(11)-a1004 [exact solution for a general environment].
  @ And quantum mechanics:
    Gaveau et al PRL(84);
    Ord AP(96);
    Cavalcanti PRE(98)qp [wave function];
    Castro et al qp/02 [non-linear quantum mechanics];
    Petruccione & Vacchini PRE(05)qp/04 [quantum];
    Shiokawa PRA(09)-a0809 [entanglement];
    > s.a. formulations and origin of quantum theory.
Variations and Generalizations > s.a. analysis [fractional].
  * Gravitational: Chandrasekhar's theory
    of stellar encounters predicts a dependence of the Brownian motion of a massive particle
    on the velocity distribution of the perturbing stars; One consequence is that the expectation
    value of the massive object's kinetic energy can be different from that of the perturbers.
  @ Classical examples: González & Saulson PLA(95) [torsional pendulum with dissipation];
    Duarte & Caldeira PRL(06) [two coupled particles];
    De Bacco et al PRL(14) [two particles, heat bath];
    Tsekov PLA(18)-a1701 [classical particle in a quantum environment].
  @ Relativistic:
    Oron & Horwitz mp/03 [covariant, 3+1];
    Zygadlo PLA(05);
    Koide & Kodama a0710;
    Dunkel & Hänggi PRP(09)-a0812 [rev];
    Tsekov AUS-a1003 [quantum].
  @ Other backgrounds:
    Krishna et al JPA(00) [on a sphere];
    Rogers qp/02 [on supermanifolds];
    Chevalier & Debbasch JSP(08) [on curved manifolds];
    Castro-Villarreal JSM(10)-a1005 [curvature effects];
    Santos et al IJMPA(17)-a1606 [in a 2D non-commutative space].
  @ Special particles / systems:
    Singer et al mp/04,
    mp/04,
    mp/04 [bounded V with a small hole, escape];
    Chakrabarty et al PRL(13) [boomerang-shaped colloidal particles].
  @ Other variations:
    Bozejko & Speicher CMP(91) [twisted Fock space];
    Sinha & Sorkin PRB(92)cm/05 [at 0 K];
    Klafter et al PT(96)feb [fractal];
    Gour & Sriramkumar FP(99)qp/98 [in quantum vacuum];
    Guta & Maassen JFA(02)mp/00;
    Merritt ApJ(05)ap/04 [gravitational];
    Santamaría-Holek & Rodríguez PhyA(06) [large T variations];
    Blum et al PRL(06) [measurement, including rotational];
    Saka et al AJP(09)mar [in a gravitational field, relaxation];
    Franosch et al Nat(11)oct
    + news pw(11)oct [resonances from hydrodynamic memory].
Other References and Formulations
  > s.a. heat kernel; measure theory
  [Wiener measure]; path integrals.
  @ History: Haw pw(05)jan;
    Duplantier in(06)-a0705;
    Bigg SHPSA(08) [Jean Perrin's work];
    Pearle et al AJP(10)-a1008
    + website [Robert Brown's original observations];
    news APS(16)aug;
    Genthon a2006 [1905 to 1934].
  @ General references: Einstein AdP(05);
    Einstein 26;
    Chandrasekhar RMP(43);
    Nelson 67;
    Caubet 76;
    Revuz & Yor 91;
    Bernstein AJP(05)may [Bachelier];
    Mansuy & Yor 08;
    Gillespie & Seitaridou 13.
  @ Aspects: McKenna & Frisch PR(66);
    Gaspard et al Nat(98)aug [chaotic nature,
      + comment
      and reply];
    Gyftopoulos qp/05 [?];
    Lukic et al PRL(05) [non-diffusive motion];
    Maniscalco JOB(05)qp [quantum, short-time dynamics];
    Reynolds PhyA(09) [and random search algorithms].
  @ Classical deterministic models: Beck PhyA(90) [transition to Gaussian stochastic process];
    Kusuoka & Liang RVMP(10).
  @ Other formulations: de la Peña et al JMP(68) [Schrödinger-like equation];
    Van Kampen & Oppenheim PhyA(86) [elimination of fast variables];
    Rapoport mp/00
      [gauge-theory formulation, stochastic differential geometry];
    Dunkel & Hänggi PhyA(07) [microscopic collision model].
  @ Experiments: news pw(10)may [measurement of a particle's instantaneous velocity];
    news at(11)apr [Brownian motion measured];
    Catipovic et al AJP(13)jul [improving the quantification].
  @ Related topics:
    Romanczuk et al EPJST(12) [active Brownian particles];
    > s.a. computational physics [multi-scale approach];
      Liouville Theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 may 2021