|  Asymptotic Safety in  Quantum Gravity | 
In General > s.a. non-renormalizable theories;
  renormalization of quantum gravity.
  * Idea: Quantum gravity with a
    cosmological constant has a non-Gaussian UV fixed point; The first-order, tetrad
    + connection form also has one, probably inequivalent to the metric gravity one.
  * Underlying physical mechanism:
    (Nink & Reuter 2012) The inverse propagator for metric fluctuations contains
    two pieces, a covariant Laplacian and a curvature-dependent potential term; These
    can be interpreted, respectively, as diamagnetic and paramagnetic-type interactions
    of the metric fluctuations of spacetime, considered as a polarizable medium, with
    the background gravitational field.
  @ Reviews: Niedermaier CQG(07)gq/06;
    Niedermaier & Reuter LRR(06);
    Percacci in(09)-a0709 [rev];
    Litim PoS-a0810;
    Percacci a1110-proc [short introduction];
    Reuter & Saueressig NJP(12)-a1202 [pedagogical introduction];
    Reuter & Saueressig LNP(12)-a1205 [and possible multifractal structure];
    Ambjørn et al NJP(12) [focus issue];
    Eichhorn a1709-proc,
    a1810-Front;
    Bonanno et al a2004
      [critical reflection on the state of the art];
    Eichhorn a2003-proc.
  @ General references: Weinberg in(79);
    Souma PTP(99)ht,
    gq/00;
    Lauscher & Reuter PRD(02)ht/01,
    CQG(02)ht/01,
    IJMPA(02)ht/01;
    Litim PRL(04)ht/03 [Euclidean, arbitrary dimension];
    Percacci PRD(06)ht/05;
    Emoto gq/06-conf;
    Ward MPLA(08)-a0808
      [predictions for G and Λ, resummation techniques];
    Niedermaier PRL(09),
    NPB(10) [from perturbation theory];
    Daum & Reuter PLB(12)-a1012 [using the Holst action];
    Manrique et al PRL(11)-a1102 [Lorentzian];
    Benedetti NJP(12)-a1107 [on shell];
    Litim & Satz a1205 [limit cycles];
    Nink & Reuter JHEP(13)-a1208,
    IJMPD(13)-a1212-MG13 [underlying physical mechanism];
    Benedetti EPL(13)-a1301 [number of relevant operators];
    Falls et al JHEP(16)-a1410 [strong support for the conjecture];
    Biemans et al PRD(17)-a1609;
    Falls et al PRD(19)-a1810;
    Slade a1812-PhD;
    Saueressig et al a1901 [scales and hierachies];
    Becker & Pagani PRD(19)-a1810 [geometric operators];
    Donoghue FrPh(20)-a1911 [critique].
  @ Renormalization group: Percacci & Perini CQG(04)ht [fixed point];
    Codello et al AP(09) [Wilsonian renormalization group equation];
    Christiansen et al a1209 [and fixed points];
      Falls a1503 [scaling behaviour];
    Pereira a1904-proc [and tensor models, coarse-graining];
    Falls et al PLB(20)-a2004 [dimension of the critical surface].
  @ Formalism, techniques:
    Gionti a1805-proc [Hamiltonian formalism];
    Moti & Shojai PLB(19)-a1812 [new cutoff identification and improvement];
    Knorr et al CQG(19)-a1907 [computational toolbox, Mathematica notebooks];
    Kwapisz & Meissner NPB(21)-a2005 [and amplitudes];
    Pawlowski & Reichert a2007 [fluctuation approach].
  @ Related topics: Reuter & Weyer PRD(09)-a0804 [and diffeomorphism invariance];
    Reuter & Weyer GRG(09)-a0903-conf [role of background independence];
    Benedetti et al AIP(09)-a0909 [role of higher-derivative terms];
    Manrique et al AP(11)-a1005 [bimetric renormalization-group flow];
    Falls JHEP(16)-a1408 [and the cosmological constant];
    Nink a1701-PhD
      [background independence and unitarity, and the 2D case];
    Houthoff et al EPJC(17)-a1705 [ADM formulation on a background spacetime with topology
      S1 × Sd];
    Einhorn & Jones PRD(17)-a1710 [asymptotic freedom];
    Knorr a2104 [derivative expansion];
    > s.a. UV Completion.
Matter and Other Gravity Theories
  > s.a. approaches to quantum gravity; dynamical triangulations and
  causal dynamical triangulations;  fractal spacetime.
  * With matter: The existence of
    non-Gaussian renormalization group fixed points is rather generic; In particular,
    the matter content of the standard model and its most common extensions gives
    rise to one non-Gaussian fixed point with real critical exponents suitable for
    Asymptotic Safety, and there are non-Gaussian fixed points for any number of
    scalar matter fields.
  @ With other variables:
    Daum & Reuter a1111-proc,
    AP(13)
      [vielbein and spin-connection variables, running Immirzi parameter];
    Harst & Reuter JHEP(12)-a1203 [tetrad-only gravity];
    Harst & Reuter PLB(15)-a1509
      [with selfdual/anti-selfdual spin-connection, likely asymptotically safe].
  @ With scalar fields: Percacci & Perini PRD(03)ht;
    Henz et al PLB(13)-a1304 [dilaton];
    Donà et al PRD(14) [compatibility of minimally-coupled matter];
    Donà et al PRD(16)-a1512;
    Christiansen et al PRD(18)-a1710;
    Eichhorn et al SPP(18)-a1804 [universality];
    Eichhorn & Held a1907-proc [and particle physics].
  @ With fermion fields:
    Vacca & Zanusso PRL(10)-a1009 [and scalar];
    Meibohm et al PRD(16)-a1510 [and scalar];
    Meibohm & Pawlowski EPJC(16)-a1601 [chiral];
    Biemans et al JHEP(17)-a1702 [minimally coupled scalar, vector, and Dirac fields, ADM formalism];
    Eichhorn et al PRD(19)-a1812;
    Daas et al PLB(20)-a2005.
  @ With other fields: Eichhorn et al PLB(19)-a1810
      [near-perturbative completion of the Standard Model with gravity].
  @ Higher-order gravity: Codello & Percacci PRL(06)ht,
    Codello et al IJMPA(07)-a0705 [f(R) gravity];
    Benedetti et al MPLA(09)-a0901;
    Ohta CQG(12)-a1205 [higher-derivative gravity];
    Ohta & Percacci CQG(14)-a1308 [in various dimensions];
    González-Martín et al PRD(17)-a1704 [asymptotic solutions];
    Einhorn & Jones PRD(17)-a1710 [quadratic, without ghosts or tachyons];
    Falls et al PRD(18)-a1801;
    Alkofer & Saueressig AP(18)-a1802 [f(R) gravity coupled to matter].
  @ Other theories: Fischer & Litim PLB(06)ht,
    Litim AIP(06)ht [D > 4];
    Reuter & Weyer PRD(09)-a0801 [conformally reduced gravity];
    Cai & Easson PRD(12) [effective scalar-tensor theory];
    Eichhorn et al JHEP(20)-a1909 [grand-unified extension];
    > s.a. deformed special relativity; hořava
gravity [candidate UV completion]; unimodular quantum gravity.
Phenomenology > s.a. black-hole quasinormal modes;
   dark energy; quantum-gravity effects
  on geometry [collapse] and particle properties.
  @ General references: Litim PTRS(11)-a1102 [applications];
    Bonanno PRD(12)-a1203 [effective action, early-universe implications];
    Eichhorn et al PRD(18)-a1710 [viability test];
    Platania a2003-FiP [rev, antiscreening in cosmology].
  @ Matter properties and interactions:
    Hewett & Rizzo JHEP(07)-a0707,
    Litim & Plehn PRL(08)-a0707 [collider signals];
    Döbrich & Eichhorn JHEP(12)-a1203,
    Eichhorn a1210-MG13 [photon-photon scattering];
    Eichhorn PRD(12) [scalar field self-interactions];
    Bosma et al PRL(19)-a1904 [graviton propagator and Newtonian potential];
    de Brito et al JHEP(19)-a1907 [towards phenomenological tests].
  @ Spacetime geometry: Reuter & Schwindt JPA(07)ht/06,
    JHEP(07)
      [scale-dependent metric and minimum length];
    Manrique & Reuter AP(10)-a0907 [background metric];
    Percacci & Vacca CQG(10)-a1008 [emergence and minimal length];
    Kurov & Saueressig a2004 [characterizing the quantum geometry];
    Zarikas & Kofinas JPCS(18)-a2006 [singularities];
    > s.a. singularities in quantum gravity [avoidance].
  @ Astrophysics and black holes: 
    Bonanno PoS-a0911 [astrophysical implications]; 
    Becker & Reuter JHEP(12)-a1205,
    a1212-MG13
      [non-trivial boundaries, and black-hole thermodynamics];
    Koch et al a1311-conf [black holes];
    Koch & Saueressig CQG(14) [structural aspects],
    IJMPA(14)-a1401 [rev];
    Held et al JCAP(19)-a1904 [black-hole shadows].
  @ Cosmology: Fang & Huang EPJC(13)-a1210 [trouble with asymptotically-safe inflation];
    Bonanno & Saueressig CRP(17)-a1702 [rev];
    Platania a1908-proc [cmb spectrum];
    > s.a. dark energy.
  > Related topics:
    see fine-structure constant.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 apr 2021