|  Phase Transitions | 
In General
  > s.a. Catastrophe; complexity;
  critical phenomena; history of physics;
  symmetry breaking.
  * Idea: A thermodynamic state such that
    a small change around it causes a thermodynamic quantity to vary discontinuously.
  * First-order: The discontinuity
    happens in a first derivative of a thermodynamic potential (for example, in the volume
    V = ∂G/∂p for the water-vapor transition); In the
    real physical process, the transition doesn't happen all at once, there is a latent
    heat and phases may coexist.
  * Second-order: The discontinuity happens
    in a second derivative of some thermodynamic potential (for example, in the susceptibility
    χ for a ferromagnet); The transition happens all at once, with no coexistence
    or latent heat, and the energy density is C0 in
    T, not C1; Fluctuations occur at all scales
    and correlations are scale invariant; When such a phase transition occurs at absolute
    zero, quantum mechanics comes into play, giving a quantum phase transition (and a quantum
    critical point) where the interactions have infinite range not just in space but also
    in time.
  * Continuous: Like second-order, but
    smoother; The energy density is C1 in T.
  * Remark: If one uses the canonical ensemble,
    a true phase transition can only be defined in the thermodynamic limit of infinite system size.
  * Cause: Most phase transitions are a result
    of thermal fluctuations; Quantum ones are different in that they are caused by fluctuations
    allowed by the Heisenberg uncertainty principle and can happen at or near 0 K.
  @ Texts: Brout 65;
    Careri 84;
    Stanley 87;
    Yeomans 92;
    Goldenfeld 93;
    Kadanoff 00;
    Onuki 02;
    Gitterman & Halpern 04;
    Hillert 07;
    Zinn-Justin 07 [and renormalization group];
    Uzunov 10;
    Nishimori & Ortiz 11;
    Gitterman 13;
    Fultz 14 [III];
    Stishov 18 [II].
  @ General references: Ruelle CMP(77) [heuristic];
    Lebowitz RMP(99)mp/00;
    Tobochnik AJP(01)mar [critical phenomena, renormalization, RL];
    Kadanoff JSP(09);
    Bangu PhSc(09)oct [conceptual];
    Kadanoff a1002;
    Nogueira a1009-ln [field-theoretic methods];
    Medved' et al EJP(13) [do-it-yourself modeling];
    Singh a1402 [and mean-field theories and renormalization, pedagogical];
    Hendi et al ChPC(19)-a1706 [new approach, motivated by quantum gravity].
  @ Critical exponents: Brout PRP(74);
    Cardy JPA(99)cm/98 [near fractal boundary];
    Kumar & Sarkar PRE(14)-a1405 [new geometric critical exponents].
  @ Non-equilibrium:
    Wattis & Coveney JPA(01),
    JPA(01) [and renormalization];
    Koverda & Skokov PhyA(05) [fluctuations];
    Hinrichsen PhyA(06) [intro];
    Henkel et al 08,
    Henkel & Pleimling 10;
    news pt(19)mar [and file-compression algorithm];
    > s.a. Percolation.
  @ First-order: Binder RPP(87);
    Zheng JPA(02) [short-time dynamics];
    Gross cm/05 [and microcanonical statistics].
  @ Continuous:
    Schwartz JPA(03) [Fokker-Planck operator];
    Sarig CMP(06) [for dynamical systems].
  @ Other types: Tolédano & Dmitriev 96 [reconstructive phase transitions].
  > And configuration-space metric: see thermodynamics
    [thermodynamic curvature]; types of metrics [information geometry].
Examples and Analogs > s.a. Crumpling; Freezing;
  Glass; lattice field theory; magnetism;
  posets; spheres [packings]; water.
  * First examples: Evaporation; Melting;
    Sublimation (shrinking of ice cubes in freezer, dry ice, ink in printing).
  * Mermin-Wagner theorem:
    A 2D continuous system cannot undergo an order-disorder phase transition at finite T.
  @ Fluids, other: Wilding AJP(01)nov [numerical];
    Barmatz et al RMP(07) [experiments in microgravity];
    Arinshtein TMP(07) [liquid-crystal];
    Fabrizio JMP(08)
      [ice-water and liquid-vapor, in Ginzburg-Landau model];
    Radin NAMS-a1209 [fluid-solid transition, for mathematicians];
    Brazhkin & Trachenko PT(12)nov [liquid-gas distinction, microscopic];
    Shimizu et al PRL(14) [liquid-to-liquid phase transition in triphenyl phosphate];
    > s.a. Superfluids.
  @ Liquid crystals: Verma PLA(96) [Monte Carlo];
    Singh PRP(00).
  @ Spin systems: Costin et al JSP(90) [infinite-order];
    Biskup in(09)mp/06;
    Sadhukhan et al PRE(15)-a1412 [fluctuations and order];
    > s.a. ising model; Potts Model.
  @ Superconductivity: Watanabe FJMS(09)-a0808 [BCS-Bogoliubov theory, second-order nature].
  @ On graphs, networks: Lyons JMP(00)m.PR/99 [graphs];
    Goltsev et al PRE(03)cm/02 [networks];
    Hartmann & Weigt 05 [statistical mechanics of combinatorial optimization];
    Andrecut & Kauffman PLA(08) [random Boolean networks, order-disorder];
    Radin a1601
      [large combinatorial systems, graphons and permutons];
    > s.a. graphs and graph types;
      networks; XY Chain.
  @ In 2D: Mermin & Wagner PRL(66);
    Barber PRP(80);
    Naumovets CP(89);
    Antoni et al cm/99-proc [N-body];
    Koibuchi PhyA(11) [triangulated surfaces on a spherical core].
  @ Small systems:
    Borrmann et al PRL(00) [classification];
    Gross 01;
    Dunkel & Hilbert PhyA(06) [canonical and microcanonical].
  @ Higher-order: Janke et al NPB(06);
    Stošić et al PhyA(09) [Ising model on Cayley tree];
    Cunden et al JSP(19)-a1810 [3rd order, gas with pairwise interactions];
    Chakravarty & Jain a2102 [critical exponents].
  @ Condensed-matter systems:
    Drouffe et al JPA(98) [condensation];
    Eggers PRL(99) [in heated sand];
    Mayorga et al PhyA(09) [precursors of order and disorder in colloids];
    Williams & Ackland PRE(12)-a1212 [sudoku as a model frustrated glassy system];
    Fultz 14 [in materials];
    Kitagawa Phy(14) [re new phase in solid oxygen];
    > s.a. Disordered Systems; Metals [metal-insulator].
  @ Other examples: Stanley in(82) [geometric analog];
    Fletcher AJP(97)jan [mechanical analog];
    Fendley & Tchernyshyov NPB(02)cm [1D];
    Biskup & Chayes CMP(03) [discontinuous];
    Velasco & Fernández-Pineda AJP(07)dec [triple point];
    English EJP(08) [spontaneous synchronization of oscillators];
    Meshcherov AP(08) [conducting filament burnout];
    Zweig et al PhyA(10) [random k-SAT problems];
    Caldarelli Phy(12) [longevity/volatility of rankings];
    > s.a. quantum  phase transitions [dynamical].
  > Examples in gravity:
    see black holes; causal dynamical triangulations;
    discrete gravity; event horizons;
    inflation; lovelock gravity;
    regge calculus.
  > Other examples: see cellular automata;
    computation [algorithmic phase transition]; crystals [melting];
    differentiable manifolds; elements [Si melts when cooled];
    Gross-Neveu Model; ideal gas [relativistic];
    metamaterials [jamming transition]; molecular physics
    [polymers]; quantum phase transitions [field theory and early-universe cosmology];
    random tilings; topological defects;
    Van der Waals fluid.
Related Topics > s.a. casimir effect [critical];
  Lee-Yang Theory; scale invariance.
  * Applications: A phase transition is
    the basis for the operation of a Cloud Chamber;
    For a quantum analog, see Huang et al PRA(09)-a0902.
  @  General references:
    Brokate & Sprekels 96 [hysteresis];
    Latora et al PhyD(99)cd/98-conf [microscopic chaos];
    Oppenheim et al PRL(03)qp/02 [and information];
    Franzosi & Pettini PRL(04)cm/03 [origin],
    NPB(07)mp/05;
    Kholodenko & Ballard PhyA(07)
      [Ginzburg-Landau equations from Hilbert-Einstein action];
    Franco et al PRD(10)-a0911 [holographic approach];
    Maslov TMP(10) [and superfluid transition];
    Alhambra et al PRX(16)-a1504 [probability of a thermodynamically forbidden transition];
    Delfino et al JSM(18)-a1803 [phase coexistence, structure of interfaces].
  @ And configuration-space topology:
    Franzosi et al mp/03,
    NPB(07)mp/05;
    Kastner PhyA(06),
    RMP(08);
    Gori et al a1706;
    > s.a. XY Chain.
  @ And symmetry breaking: Gill CP(98);
    Baroni & Casetti JPA(06) [topological conditions];
    Del Giudice & Vitiello PRA(06)cm [electromagnetic field and matter, phase locking];
    Wen ISRN(13)-a1210 [topological order and phases];
    del Campo & Zurek IJMPA(14)-a1310 [Kibble-Zurek mechanism and density of defects].
  > Other related topics: see
    Clausius-Clapeyron Equation; Critical Points;
    Hysteresis; Order Parameter;
    Topological Materials; Universality.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 feb 2021