|  Kaluza-Klein Phenomenology | 
In General
  > s.a. causality violations; geodesics;
  spacetime [measurement]; kaluza-klein theory;
  variation of constants.
  * Effective 4D forces: In the 5D
    theory, if the extra dimension has a Killing vector with constant norm (scalar
    field), 5D timelike geodesics project to solutions of the Lorentz force equation
    on spacetime.
  * Possibilities: Particle spectra,
    or effects on microscopic spacetime quantum geometry, which in turn affect
    particle propagation (> see quantum-gravity
    phenomenology); Space and time variation of the effective G
    (> see gravitational constant).
  @ 4D dynamics: Minguzzi IJGMP(15)-a1502 [non-constant internal dimensions and couplings].
  @ Collider phenomenology: Hewett PRL(99);
    Mathews et al JHEP(00) [at the Tevatron];
    Bhattacharyya et al PLB(05) [Kaluza-Klein particles at colliders].
  @ Standard model: Gillan ht/01 [6D];
    Cianfrani & Montani IJMPD(08)gq/06 [from 8D, and neutrino mass];
    Barnaföldi et al a1509 [strong interactions].
  @ Other particles: Ichinose PRD(02)ht [fermions];
    Belayev gq/03-conf [extra forces];
    Kahil JMP(06) [particle motion];
    Grard & Nuyts PRD(06)ht,
    comment Maziashvili a0706 [towers of fields];
    Lacquaniti et al GRG(11)-a0912-conf [geodesic particle motion, effective 4D motion];
    Erdem MPLA(10) [fermions];
    Overduin et al GRG(13)-a1305 [geodetic precession and Gravity Probe B];
    Chopovsky et al PLB(14)-a1402 [questioning the existence of Kaluza-Klein modes];
    Lü et al a1909 [4D Einstein-Maxwell-dilaton theory].
  @ Other phenomenology:
    Dzhunushaliev & Singleton GRG(00);
    Horowitz & Maeda CQG(02)ht [bubble collision];
    Kokarev G&C(98)gq/02 [generating solutions];
    Ganguly & Parthasarathy PRD(03) [optical activity];
    Yang et al PRD(03)gq [5D to 4D];
    Ivanov & Prodanov PLB(05) [modifications to electromagnetism];
    Dzhunushaliev & Myrzakulov IJMPD(07)gq/05 [singularities];
    da Costa gq/06 [charge quantization];
    Salvio PhD(06)ht/07 [6D theory and low-energy physics];
    Ponce de León in(10)-a1003 [star exteriors];
    Pugliese & Montani MPLA(13)-a1305 [astrophysical, stellar models];
    > s.a. spinning particles.
  @ Dark matter:
    Servant & Tait NPB(03)hp/02,
    NJP(02)hp;
    Cheng et al PRL(02)hp;
    Hooper hp/04-proc [indirect searches].
  @ Related topics: Casas et al PLB(87) [5D, classical tests of general relativity];
    Friedman & Higuchi NPB(90);
    Wesson et al IJMPD(93);
    Yu & Ford PLB(00)gq/99 [lightcone fluctuations in quantum gravity];
    Montani IJTP(05)gq/04 [4D gauge connections];
    Liko PLB(05)ht [non-compact, electric and magnetic fields];
    Ponce de León IJMPD(09)gq/07 [exterior solutions and equivalence principle].
  > Related topics: see formulations
    of electromagnetic theory; modified newtonian gravity [PPN formalism];
    tests of general relativity.
Cosmology > s.a. chaos in the metric and
  bianchi models; cosmological constant;
  inflation.
  * Idea: Higher-dimensional cosmology;
    most models are anisotropic and generalize the Kasner and the Mixmaster universes.
  * Features: Casimir effects lead to
    spontaneous compactification.
  @ General references: Freund NPB(82);
    Abbott et al PRD(85) [and inflation, numerical];
    Díaz et al JMP(88) [solitonic solutions];
    Faraoni et al IJMPD(95) [COBE constraints];
    Lykken & Randall JHEP(00)ht/99;
    Mohammedi PRD(02)ht [and acceleration];
    Buettner et al IJMPA(04)ap/00 [early universe];
    Mongan GRG(01)gq;
    Liko et al SSR(04)gq/03;
    Wesson 06;
    Jamil a0810-MG12 [and dark energy];
    Wanas et al ChPB(12)-a1111.
  @ Variations: Darabi et al PLB(05) [non-commutative minisuperspace];
    Vakili et al AP(06) [with spinor and cosmological constant];
    Darabi a1101-ch
      [non-compact internal manifold, and acceleration];
    Sharif & Khanum ASS(11)-a1104 [FLRW-type, with varying G and Λ].
Compactification
  > s.a. Pyrgon; Radion Field;
  spacetime models [dimensional reduction].
  * Idea: In traditional
    Kaluza-Klein models, one usually wants a compact internal manifold (usually
    a coset space), of size of the order of Planck length; This usually involves
    matter fields, and the gravitational Casimir effect to fix an equilibrium
    internal size; More recent proposals have used either non-compact, or compact
    but large internal dimensions (> see branes).
  * Spontaneous compactification:
    One introduces a potential Aabc
    which contributes −(1/48) Fabcd
    Fabcd to the Lagrangian, where
    F:= dA; The vacuum expectation value of F drives the
    spontaneous compactification.
  * Remark: One wants a particular
    kind of energy-momentum density matter condensate in the quantized ground state, or
    of spin-density matter condensate (only for parallelizable fibers).
  @ General references: Hinterbichler et al PRD(14)-a1310 [general manifolds, Kaluza-Klein tower of fields].
  @ Non-Abelian, SO(3):
    Cremmer & Scherk NPB(76),
    NPB(77);
    Horváth et al NPB(77);
    Chodos & Detweiler PRD(80);
    Freund NPB(82);
    Dereli & Tucker PLB(83);
    Appelquist et al PLB(83).
  @ Abelian: Muzinich JMP(86);
    Cho & Pac MPLA(88);
    Szydłowski PLB(88);
    Sokołowski CQG(89).
  @ And supergravity: Cremmer et al PLB(78);
    Freund & Rubin PLB(80).
  @ Stabilization of extra dimensions: Bronnikov & Rubin PRD(06)gq/05;
    Chakraborty & SenGupta EPJC(17)-a1701 [classical, in higher-curvature gravity].
  @ Related topics: Chodos & Myers AP(84),
    PRD(85) [Casimir energy, effective potential];
    Teo PLB(09)-a0812,
    NPB(09) [finite-temperature Casimir effect];
    Lacquaniti & Montani a0906-proc [new approach to matter dynamics];
    Eingorn & Zhuk PLB(12)-a1201 [gravitational interaction];
    Cunha & Maia a1310 [non-compact internal manifold, and massive gravity].
Other Aspects > see BEC [analog]; branes; carbon [and defects in graphene]; fifth force; higher-dimensional gravity [waves]; Raychaudhuri Equation.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 jan 2020