|  Motion of Relativistic Gravitating Bodies | 
In General
  > s.a. gravitational chaos and phenomenology
  [2-body, etc]; tests of general relativity with orbits.
  * Idea: It can be shown that a material
    object moves along a geodesic in a suitable small-size and small-mass limit; The first
    corrective effect is that orbits of radiating particles decay from energy loss (has
    been observed for the binary pulsar).
  @ General references:
    Asada et al 11 [including charge, spin, and gravitational radiation effects];
    Oltean et al PRD(20)-a1907 [equations of motion from conservation laws].
  @ Small-size limit: Ehlers & Geroch AP(04)gq/03;
    Poisson LRR(04);
    Futamase et al PRD(08)-a0811 [small charged black hole];
    Gralla PRD(10)-a1002;
    Poisson et al LRR(11)-a1102;
    Gralla & Wald CQG(11) [coordinate freedom];
    Gralla PRD(13)-a1303 [mass and charges as explicit surface integrals];
    Geroch & Weatherall CMP(18)-a1707;
    > s.a. test-body motion [geodesics
      and extended-object corrections, semiclassical corrections].
  @ Radiation reaction, Schwarzschild: Warburton et al PRD(12)-a1111 [evolution of inspiral orbits];
    Diener et al PRL(12)-a1112 [charged particle, fully self-consistent orbits and waveforms].
  @ Radiation reaction, Kerr: Ori PLA(95)gq,
    PRD(97) [Carter invariants];
    Mino et al PRD(97);
    Hughes PRD(00)gq/99,
    PRD(01)gq;
    Glampedakis & Kennefick PRD(02)gq,
    et al PRD(02) [inspiral];
    Sago et al PTP(06)gq/05,
    Sago & Fujita PTEP(15)-a1505 [evolution of orbit];
    > s.a. gravitational self-force.
  @ In alternative theories of gravity: Esposito-Farèse FTP(11)-a0905-ln.
Two-Body Problem
  > s.a. black-hole thermodynamics; chaos
  for gravitating bodies; classical systems.
  * Idea: As in Newtonian dynamics,
    can be expressed as a 1-body problem with reduced mass in a fixed potential.
  * Modeling: The stationary ones
    are modeled in general relativity as vacuum or perfect fluid spacetimes with a
    helical Killing vector field ka,
    the corotating generator of time translations; Such systems are not asymptotically
    flat, but have asymptotic behavior corresponding to equal amounts of ingoing and
    outgoing radiation.
  @ General references: Damour a1312-fs [rev];
    Foffa et al PRD(17)-a1612 [effective field theory approach].
  @ Spin-orbit coupling:
    Porto CQG(10);
    Iorio GRG(12)-a1012 [exact, and spin-spin effects];
    Hartung & Steinhoff AdP(11)-a1104 [post-Newtonian spin-orbit Hamiltonian];
    Bini & Damour PRD(14)-a1404;
    Levi & Steinhoff JCAP(16)-a1506,
    JCAP(16)-a1506 [effective field theory approach, up to 4PN order].
  @ Compact binaries:
    Portegies Zwart & McMillan ap/99-conf [merger rates];
    Postnov & Prokhorov ap/99-conf;
    Baumgarte PRD(00)gq [circular orbits];
    Gourgoulhon et al PRD(02)gq/01 [spacetime approach];
    Alvi PRD(01)gq [E and L in inspiral];
    Hartl & Buonanno PRD(05)gq/04 [precessing, PN];
    Königsdörffer & Gopakumar PRD(05)gq [eccentric spinning compact binaries, PN];
    Futamase & Itoh LRR(07);
    Damour a0704-ln;
    Foffa & Sturani CQG(14) [effective field theory methods];
    Kuntz PRD(20)-a2003 [half-solution];
    Kuntz a2010-PhD [general relativity vs scalar-tensor theories].
  @ Effective 1-body approach: Buonanno & Damour PRD(99)gq/98;
    Fiziev & Todorov PRD(01)gq/00;
    Damour in(14)-a1212 [rev].
  @ Full 2-body problem: Laguna PRD(99)gq;
    Damour in(87),
    et al PRD(00)gq [ADM];
    Damour PRD(01)gq [spinning black holes];
    Blanchet CRAS(01)gq;
    Steinhoff et al PRD(08)-a0809,
    Hergt & Schäfer PRD(08)-a0809 [spin-spin interaction];
    Kol & Smolkin PRD(09) [dressed-perturbation-theory approach];
    Bini et al PRD(15)-a1510 [spin-dependent two-body interactions from gravitational self-force];
    > s.a. types of black holes [binaries].
  @ With cosmological constant: Jetzer & Sereno PRD(06)ap;
    Bisnovatyi-Kogan & Merafina IJMPD(19)-a1906.
Post-Newtonian Expansion > s.a. classical particles;
  gravitational collapse; gravitational
  self-force; particles in schwarzschild spacetime.
  * Applicability: It works
    best for pairs of objects with values of the mass ratio far from 1, and
    breaks down when the objects are very close.
  @ General references: Blanchet a0907-ln;
    De Laurentis a1004.
  @ 1PN:
    Itoh et al PRD(00)gq/99 [strong field];
    Racine & Flanagan PRD(05) [arbitrarily structured bodies].
  @ 2PN: Gergely PRD(00)gq [evolution of spinning binaries].
  @ 2.5PN: Kidder et al PRD(93);
    Tagoshi et al PRD(01)gq/00 [spinning];
    Itoh et al PRD(01)gq.
  @ 3PN: Damour et al PRD(00)gq/99 [invariants];
    Blanchet & Faye PLA(00)gq,
    PRD(01)gq/00;
    Damour et al PRD(00)gq [last stable orbit],
    PRD(01)gq/00 [approaches];
    Jaranowski & Schäfer AdP(00)gq-proc;
    Porto & Rothstein PRL(06)gq,
    gq/07-MG11 [spin-spin interaction].
  @ 3.5PN: Blanchet et al PRD(02)gq/01 [inspiral];
    Pati & Will PRD(02)gq  [radiation reaction].
  @ Related topics: Rasio ap/99-conf [final state];
    Arminjon NCB(01)gq [weak field];
    Blanchet in(01)gq/02 [accuracy of approximation];
    Iorio ASS(07)gq/04 [mean anomaly advance];
    Porto & Sturani gq/07-proc [and constraints on couplings];
    Foffa & Sturani PRD(13)-a1206 [at 4PN order, up to quadratic terms in G].
Other Topics and Backgrounds
  > s.a. dynamics of gravitating bodies.
  @ Three-body problem: Imai et al PRL(07)gq [choreographic solution in general relativity];
    Loustó & Nakano CQG(08)-a0710 [post-Newtonian].
  > Related topics:
    see Flyby Anomalies;
    kaluza-klein theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 may 2021