|  Lorentz Group | 
In General
  > s.a. Racah Coefficients; tests of lorentz invariance.
  * For 4D spacetime:
    The 6D Lie group O(3,1) of transformations on \(\mathbb R^4\) (or
    \(\mathbb C^4\) for the complex Lorentz group) which leaves the
    form η = diag(−1,1,1,1) invariant:
L:= {Λ ∈ GL(4, \(\mathbb R\)) | ΛT η Λ = η} .
* Connected components: The real Lorentz group has 4 connected components,
| L+u:=
      {Λ ∈ L | det Λ = 1,
      Λ00 > 0} L+d:= {Λ ∈ L | det Λ = 1, Λ00 < 0} | L−u:=
      {Λ ∈ L | det Λ = −1,
      Λ00 > 0} L−d:= {Λ ∈ L | det Λ = −1, Λ00 < 0} ; | 
    The subgroup of proper Lorentz transformations L+
    = SO(3,1); Examples of specific transformations are P ∈
    L−u,
    PT ∈ L+d,
    T ∈ L−d.
  * Restricted Lorentz group:
    The restricted, or proper orthochronous Lorentz group is
    L+u;
    Its double covering is SL(2, \(\mathbb C\)) (or SL(2, \(\mathbb C\)) ×
    SL(2, \(\mathbb C\)), in the complex case); Any element Λ ∈
    L+u
    can be decomposed as
Λ = Λ1 Λ2 Λ3 , with Λ1, Λ3 rotations and Λ2 a boost along the z direction.
  @ General references: Oblak a1508-ln
      [and conformal transformations of the sphere, undergraduate-level].
  @ Properties of the group: Ungar AJP(92)sep;
    Schmidt IJTP(98)gq/95 [non-compactness].
  @ Properties of transformations: Urbantke FPL(03)mp/02 [as hyperplane/line reflections];
    Jadczyk & Szulga EJLA(16)-a1611.
  @ Lie algebra: Coll & San José Martínez GRG(02)gq/01 [generators];
    Hanson GRG(12)-a1103 [orthogonal decomposition];
    > s.a. orthogonal lie groups.
  @ Related topics: Singh AJP(86)feb;
    Toller mp/03 [homogeneous spaces];
    Girelli & Livine gq/04 [as deformed Galileo group];
    Simon et al IJTP(06)qp [in terms of Hamilton's "turns"];
    Kerner a0901
      [from \(\mathbb Z\)3-graded cubic algebra].
  > Online resources: see
    Wikipedia page.
Representations
  > s.a. 4-spinors; CPT theorem; poincaré
  group [inhomogeneous Lorentz group]; special-relativistic kinematics.
  * Result: Every irreducible representation of
    SL(2, \(\mathbb C\)) is equivalent to D(j/2, k/2)
    = {Aam},
    with j, k ∈ \(\mathbb N\), which acts on tensors
Ta... bc'... d' = T(a... b)(c'... d') by Ta... bc'... d' \(\mapsto\) Aam Abn A*c'p' A*d'q' Tm... np'... q' .
  * Relationships: The irr's of SU(2) are equivalent
    to D(j/2, 0)
    = D(j/2).
  * Unitary representations: It has no
    finite-dimensional uirr's; Hence, we must use infinite-dimensional representations.
  * Real D-dimensional:
Jab = ηbc xa (∂/∂xc) − ηac xb (∂/∂xc) .
  @ General references: Naimark 64;
    Gopala Rao et al JPA(95),
    JPA(95),
    JPA(95).
  @ Unitary:  Dirac PRS(45);
    Mukunda & Simon JMP(95);
    Kubieniec JMP(05) [uirr, proper orthochronous],
    JMP(05) [supplementary series]
  @ Transformations of specific quantities: Jordan et al PRA(06)qp/05 [spin density matrices];
    > s.a. thermal radiation; electromagnetic-field dynamics.
  @ Special types of representations: Fredsted JMP(01) [exponentiated spin-1/2 and 1 representations];
    Mashhoon AdP(09)-a0908 [non-local, and accelerated observers];
    Hanson a1201 [exponential of the spin representation];
    Atehortua et al a1210 [non-linear, and DSR];
    Sellaroli a1509 [infinite-dimensional];
    Varlamov IJTP(16)-a1602
      [interlocking representations and classification of relativistic wave equations];
    Kocik a1604 [Cromlech, menhirs and celestial sphere].
  @ Related topics:
    Mukunda & Radhakrishnan JMP(73) [3D];
    Manogue & Schray JMP(93)ht [10D, in terms of octonions];
    Varlamov mp/02,
    JPA(06)mp/05 [and relativistic spherical functions];
    Newman & Price AJP(10)jan [complex formulation];
    Karplyuk & Zhmudskyy a1807 [hypercomplex representation].
Variations > s.a. modified lorentz group and symmetry violations.
  @ Discrete version: Lorente & Kramer JPA(99) [on hypercubic lattice];
    Levi et al PRD(04)ht/03 [Lorentz invariance];
    Tarakanov a1301 [discrete subgroups];
    Arrighi et al NJP(14) [for quantum walks and quantum cellular automata].
  @ Emergence in a discrete setting: Livine & Oriti JHEP(04)gq;
    Sengupta CQG(14)
    + Bojowald CQG+(14) [in a 2D model for lqg];
    Mlodinow & Brun a1802 [wave equations from quantum walks on regular lattices].
Lorentz Invariance in Physics > s.a. poincaré group.
  * Derivation: The structure of
    the Lorentz transformations follows from the absence of privileged inertial
    reference frames and the group structure of the transformations; It is not
    necessary to assume the existence of an invariant speed.
  @ General references: in Will 93, ch2 [evidence];
    Rodrigues & Sharif FP(01) [local, in general relativity];
    Wolf et al gq/03-proc [tests];
    Lämmerzahl AdP(05);
    Afshordi a1511 [in high-energy physics];
    Nicolis a2010 [signs in Newtonian mechanics].
  @ Origin of Lorentz symmetry: Froggatt & Nielsen hp/02-proc [derivation in quantum field theory];
    Korbel ht/04 [quantum];
    Albrecht & Iglesias PRD(15)-a1003 [from a random Hamiltonian];
    Shanahan FP(14)-a1401 [and matter waves];
    Höhn & Müller NJP(16)-a1412 [operational approach, from quantum communication];
    Raasakka PRD(17)-a1705
      [transformations between local thermal states in Local Quantum Physics];
    Chappell et al a1501 [3D Clifford geometric algebra].
  @ As an emergent symmetry: Bednik et al JHEP(13)-a1305 [in strongly coupled theories];
    Khoury et al CQG(14)-a1305,
    IJMPD(14)-a1405-GRF;
    Kharuk & Sibiryakov TMP(16)-a1505 [and chiral fermions];
    Roy et al JHEP(16)-a1510 [near fermionic quantum critical points];
    Arkani-Hamed & Benincasa a1811 [from the scattering facet of cosmological polytopes];
    Volovik a2011;
    > s.a. Einstein-Aether Theory.
  @ For specific systems:
    Kim cm/96-proc [in condensed matter];
    Chen PRL(14)-a1404 [chiral theory, spin-1/2 particle with definite helicity];
    Bisio et al FP(17)-a1707 [from a quantum walk];
    > s.a. cellular automaton; electricity;
      relativistic quantum mechanics.
  @ Related topics: Chkareuli et al PRL(01)hp [and origin of gauge symmetries];
    Peres & Terno JMO(02)qp/01 [of open systems];
    Szabó FPL(04) [not fundamental];
    Rodrigues et al IJGMP(05)mp [and ambiguity of curvature/torsion];
    Casadio PLB(13)-a1303 [Lorentz invariance in a quantum field theory with Planck-scale cutoff];
    Shanahan FP(14) [and wave properties of matter];
    Pelissetto & Testa AJP(15)apr-a1504 [without the invariant speed assumption, elementary proof];
    Bosso & Das IJMPD(19)-a1812 [invariant mass and length scales].
  > Related topics: see affine connections;
    cellular automaton; finsler geometry;
    hamiltonian systems; history of relativistic physics;
    lorentz-group phenomenology; probabilities;
    quantum-gravity phenomenology; special relativity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 may 2021